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Abstract

We study poverty minimization via direct transfers, framing this as a statistical learning problem

that retains the information constraints faced by real-world programs. Using nationally representative

household consumption surveys from 19 countries that together account for 43% of the world’s poor, we

estimate that reducing the poverty rate to 1% (from a baseline of 13% at the time of last survey) costs

$149B nominal per year. This is 5.4 times the corresponding reduction in the aggregate poverty gap, but

only 21% of the cost of universal basic income. Extrapolated out of sample, the results correspond to a

cost of (approximately) ending extreme poverty of roughly 0.3% of global GDP.
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1 Introduction

The share of the world’s population in extreme poverty, in the sense of living on less than $2.15 in 2017

PPP dollars per day, declined from 43% in 1981 to 10% in 2015, arguably one of humanity’s great recent

successes.1 It might thus appear that the end of extreme poverty—the first of the Sustainable Development

Goals—is within reach. This has motivated calls for renewed efforts, such as the creation of a multilateral

funding vehicle focused on direct wealth transfers to people in poverty (Kharas and McArthur, 2023). At

least in income terms, the arithmetic can appear quite encouraging: recent estimates of the global poverty

gap—the cumulative amount by which everybody living below the extreme poverty line is below it, and thus

also the cost of income transfers sufficient to end extreme poverty were it feasible to give everyone exactly

what they needed to reach the line—put it at just 0.11%–0.17% of global GDP.2

However, such transfers are not feasible. Existing estimates of the global poverty gap are based on

household surveys that typically cover a tiny fraction, on the order of 0.001% to 0.01%, of the population of

the countries in question. Thus, for almost all households in low- and middle-income countries, we do not

have a direct estimate of their standard of living. Collecting that information through regular surveys would

be prohibitively costly (Kilic et al., 2017) and not incentive compatible, if the amounts households were to

receive depended directly on what they reported about hard-to-verify quantities like consumption. Such cost

and incentive considerations are among the reasons that existing programs typically allocate transfers on the

basis of proxies for living standards that are cheaper to measure and verify (Hanna and Olken, 2018). For

example, in the widely-used Proxy Means Test (PMT) approach, policymakers use survey data on the living

standards (typically, consumption) of a representative but small sample of households to train a model that

predicts living standards based on proxies available in census data (for instance, housing materials); model

predictions are then used to determine transfer eligibility for all households (Grosh and Baker, 1995).

Learning to Target Income Transfers In this paper we maintain this same information environment

and ask how to design feasible policies that would end (up to a given tolerance) extreme poverty at the lowest

possible cost. We formulate poverty targeting as a statistical learning problem, building on previous work

that proposes to learn data-driven decision rules via loss minimization (Athey and Wager, 2021; Bertsimas

and Kallus, 2020; Kitagawa and Tetenov, 2018). The policymaker learns a transfer policy which maps a

1According to World Bank (2021) estimates; see also Armentano et al. (2025). Throughout the paper we refer to extreme
poverty as having a material standard of living below some given threshold, a definition which may differ from local communities’
concepts of poverty Alatas et al. (2012).

2Authors’ calculations using poverty gap estimates from https://www.brookings.edu/articles/

a-purpose-driven-fund-to-end-extreme-poverty-by-2030, based on Cuaresma et al. (2018), and from Our World in Data
(https://ourworldindata.org/grapher/total-shortfall-from-extreme-poverty?tab=chart), converted to nominal 2023
USD, and IMF estimated 2023 nominal GDP of $106T (https://www.imf.org/external/datamapper/NGDPD@WEO/WEOWORLD,
accessed 6 September 2025.) Here and throughout we report the cost of transfers; delivering these transfers would require some
additional administration costs and service fees.
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household’s observable characteristics into a nonnegative transfer amount, seeking to minimize expected loss

for a given budget (or, in the dual formulation, to control expected loss at minimum cost). We consider

both unrestricted transfer policies, where each household can receive any nonnegative amount, and binary

policies, where each household must receive either zero or some common positive amount. The domain of

the loss function is the household’s post-transfer standard of living.3

The choice of loss function requires some care. Because the headcount poverty rate is easily understood

and widely used in public discourse about poverty, we would like to learn policies that efficiently reduce

the rate.4 But directly minimizing the rate may conflict with notions of equity: it is well-known that

in the perfect information case controlling the post-transfer poverty rate can lead to inequitable policies

(Atkinson, 1987; Bourguignon and Fields, 1990; Sen, 1976), and we find that the same is true under imperfect

information. Intuitively, the most budget-efficient way to reduce the rate is to allocate transfers to households

just below the poverty line, not to the poorest households; whereas we want the opposite, i.e. policies that

are equitable in the sense that they allocate (weakly) larger transfers to poorer households. We show that

using algorithms designed to minimize the poverty gap—rather than a headcount metric—enables us to avoid

inequity in this sense, all while preserving formal guarantees on poverty rate reduction. Specifically, gap

minimization is equivalent to minimizing the worst-case (across population subgroups) conditional poverty

rate, and equivalent to rate minimization overall in a regime where rate minimization is itself not inequitable.

We therefore provide algorithms for both rate and gap minimization, but emphasize in our discussion the

effect of the optimal gap-minimizing policy on the (more familiar) poverty rate metric.

The Cost of Targeted Transfers We quantify the aggregate cost of reducing poverty in a sample of

19 countries, including essentially all of those for which (i) a recent, high-quality, nationally-representative

living standards survey is available publicly with a consumption aggregate included, (ii) the national poverty

rate exceeds 10%, and (iii) the country contains more than 1% of the world’s extreme poor. The first

restriction aims to ensure the reliability of our living standards measures; the second to ensure that we

observe enough poor households in each survey for effective statistical learning; and the third simply to

prioritize the countries that matter most.5 Each could be relaxed in the future, as we discuss below. This

3To be precise, and as we discuss below, this is the standard of living the household could attain if it spent the entire transfer
on consumption. While we abstract from dynamics here, conceptually we think of households that save or invest a portion of
their transfer as revealing that they are at least weakly better-off by doing so. One can thus interpret the exercise as learning
policies that raise welfare to at least the level that ending today’s consumption poverty would achieve.

4For example, Target 1.1 of the Sustainable Development Goals is “By 2030, eradicate extreme poverty for all people every-
where, currently measured as people living on less than $1.25 a day” and the corresponding indicator 1.1.1 is the “Proportion of
the population living below the international poverty line by sex, age, employment status and geographic location (urban/rural)”
(UN Statistics, 2019).

5Given its importance for global poverty we also include India, where we constructed the consumption aggregate by hand.
The resulting full list of countries covered as of this draft is Benin, Burkina-Faso, Colombia, Côte d’Ivoire, Ethiopia, Ghana,
Guinea-Bissau, India, Kenya, Malawi, Mali, Niger, Nigeria, Senegal, South Africa, South Sudan, Tanzania, Togo, and Uganda.
See Section 3 for further discussion and Appendix D for details of the data sources.
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sample is very poor, with a pre-transfer population-weighted average poverty rate as of the (varied) years in

which the surveys were conducted of 13% and poverty gap index of 4%, and collectively accounts for 43% of

the world’s extreme poor.6

We estimate that reducing the $2.15 2017 PPP poverty rate to 1% in all countries in this sample as of

their survey year, using a gap-minimizing (and hence weakly equitable) policy, would cost $149B nominal per

year. This is substantially lower than the cost of blunter, uniform policies: it is 21% of the cost of providing

all individuals a basic income at the level of the poverty line and 55% of the cost of providing all individuals

basic income amounts, varied by country, that achieve the same rate. This highlights the relative benefit of

targeting with observable proxies of consumption compared to not targeting at all. On the other hand, it

is 5.4 times the amount by which it reduces the aggregate poverty gap, or equivalently 5.4 times the cost

of achieving the same gap reduction in an oracle scenario. This comparison quantifies the relative cost of

targeting with proxies versus perfect information on consumption. Reducing the poverty rate implied by the

newer $3.00 2021 PPP poverty line to 1%, meanwhile, costs 1.5 times as much as doing so under the older

$2.15 2017 PPP line, reflecting the fact that the revision implied a meaningful real shift in the definition of

poverty (Foster et al., 2025) and correspondingly more ambitious goals, as Pritchett (2024) among others

has called for.

Real-world transfer policies are often simpler than our baseline gap-minimizing one. If we restrict at-

tention to binary policies the cost of achieving poverty rates of 1% increases by 35%, to $201B nominal

per year. This implies that, for a given poverty-reduction goal, the fiscal cost of using a simpler “eligibility

rule” structure is meaningful. The equity benefits of gap-minimizing policies, on the other hand, turn out

to cost little, if anything: policies learned to directly minimize the rate are if anything more expensive,

for a given reduction in the rate, than policies learned to minimize the gap. This likely reflects the fact

that rate minimization is a non-convex and computationally more difficult problem, which in turn limits the

number of predictors we can use. Overall, the results suggest that gap-minimizing policies offer an attractive

combination of equity and performance with respect to the familiar poverty rate metric.

We end by discussing some implications of, and caveats to, these findings. For our estimates to be valid,

financing for the policies we learn would need to be incremental, not diverted from existing programming

which separately affects living standards. A meaningful share of that incremental financing could plausible

come, in many countries, from domestic revenue. But most countries would likely also require international

transfers. International transfers at such scale could in turn have substantial macroeconomic effects, including

6The estimate of the share of the world’s poor that our sample accounts for is based on national poverty rates and populations
for all countries from World Poverty Clock as of 25 August 2025. The estimates of the sample’s poverty rate and poverty gap are
based on available survey data from these countries (Table E.2). National poverty rates in the surveys are generally consistent
with poverty rate estimates from the World Bank in the survey year.
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exchange rate appreciation as well as stimulus to or inflation in the domestic economy. We briefly discuss

pertinent recent evidence. Recent work on the general equilibrium effects of cash transfers, for example, has

documented substantial expansionary effects (Egger et al., 2022; Gerard et al., 2024), which we necessarily

abstract from here. We also discuss what scale of wealth transfers, as proposed by Kharas and McArthur

(2023), might be required to achieve income gains equivalent to the income transfers we study here.

Finally, we ask what the results suggest about the cost of (approximately) ending poverty globally, using

the in-sample results to predict the potential costs of poverty reduction in others. One caveat is that most in-

sample surveys were conducted several years ago (and many prior to the COVID-19 pandemic), and poverty

rates may have changed since the most recent survey was conducted. That said, our in-sample results are

consistent with an overall cost of reducing the global poverty rate to 1% of $335B per year.7 This is 0.3% of

global GDP, and 0.5% of OECD GDP—a bit less than total OECD official development assistance in 2023,

prior to recent cuts to aid budgets.

Related Work Our work sits at the intersection of two long-standing traditions of thought about economic

development. One has posited ambitious development goals and then sought to calculate the funding required

to achieve them. From the 1960s onwards, for example, analysts at development banks used a “two-gap”

framework based on the Harrod-Domar constant-returns growth model to calculate the capital investment

required to achieve a target rate of economic growth (Domar, 1946; Easterly, 1999; Harrod, 1939). In the

early 2000s, as attention shifted to poverty reduction and a broader set of concurrent social objectives,

the UN Millennium Project estimated that its proposed array of Millennium Development Goals (MDGs)

could be achieved if rich countries increased foreign aid to 0.54% of their GNI in 2015, from 0.25% in 2003

(Sachs, 2005). Other contemporary analyses focused on the cost of achieving the MDG for extreme poverty

specifically, and are thus more closely related to ours. These estimates were constructed by (i) calculating the

growth in GDP per capita required to achieve a given level of poverty, assuming that the relative distribution

of income stayed fixed, and then (ii) calculating the amount of aid needed to generate that growth using

either a “two-gap” model (e.g., Devarajan et al., 2002) or estimated coefficients from cross-country aid-on-

growth regressions (e.g., Anderson and Waddington, 2007). As the authors took care to point out, the causal

assumptions in these analyses were heroic, and indeed in some cases counterfactual.8 This was necessarily,

in the words of Devarajan et al. (2002), “a highly speculative exercise.” Ours, in contrast, is built on the

7Note that achieving a 1% global rate requires reducing country-specific poverty rates to 1.4%, since some countries have
essentially no extremely poor people. Note also that this calculation excludes the cost of ending poverty in the following low-
and middle-income countries, as their PPP conversion factors and market exchange rates were not available from the World
Bank as of 25 August 2025: .

8For example, Devarajan et al. (2002) used the “two-gap” approach despite the fact that it was soundly rejected by the data
(Easterly, 1999) and had been widely criticized, including by one of the authors himself. Anderson and Waddington (2007)
used coefficients from cross-country growth regressions despite the fact that many would have agreed with Mankiw et al. (1995)
even a decade earlier that “using these regressions to decide how to foster growth is ... most likely a hopeless task.”
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more mechanical idea that giving someone $1 increases their disposable income by $1. It is in this sense less

speculative (though it may for that very reason yield conservative estimates, if other strategies that reduce

poverty through less direct causal mechanisms are also cheaper).

The second literature concerns the optimal design of transfer programs specifically. Theoretical work

on poverty measurement with full knowledge of the income or consumption distribution (e.g., Foster et

al., 1984; Greer and Thorbecke, 1986; Sen, 1976) provided one potential point of departure: a logical next

step might have been to develop methods to minimize the proposed metrics in more realistic, limited-

information environments. Along these lines, Kanbur (1987) and Ravallion and Chao (1989) discussed some

theoretical properties of poverty-minimizing transfer policies under specific, stylized information structures,9

and Glewwe (1992)—in perhaps the closest antecedent to our work—proposed and illustrated learning a

transfer policy as a function of a (small) set of individual-level observable covariates Xi via the plug-in

principle, i.e. by minimizing a given poverty metric in-sample. In practice, however, most subsequent work

has focused on the simpler problem of classifying households as poor or non-poor to determine their eligibility

for a given, fixed transfer. Potential methods for doing so include proxy means testing (Alatas et al., 2012;

Brown et al., 2018; Grosh and Baker, 1995; Noriega-Campero et al., 2020) including using non-traditional

data (Aiken et al., 2022); community-based targeting (Alatas et al., 2012; Coady et al., 2004); and geographic

targeting (Baker and Grosh, 1994; Bigman and Fofack, 2000; Smythe and Blumenstock, 2022). Today the

availability of modern, high-dimensional statistical learning techniques and of far greater computational

power make it a propitious time to revisit Glewwe’s (1992) formulation, as we do here.

The methods we develop add to the literature on data-driven decision making (Athey and Wager, 2021;

Bertsimas and Kallus, 2020; Bhattacharya and Dupas, 2012; Kallus and Zhou, 2021; Kitagawa and Tetenov,

2018; Manski, 2004). In particular, the problems we solve are examples of a “prediction-policy problem”

in the sense of Kleinberg et al. (2015), meaning that we can impute the counterfactual rewards of different

actions and obtain an optimal policy by minimizing a loss function that depends on these counterfactual

rewards. It is distinct in this sense from recent work on learning treatment assignment policies where

rewards under different actions are learned from experimental data (Bhattacharya and Dupas, 2012; Huang

and Xu, 2020; Luedtke and van der Laan, 2016; Sun, 2021; Sun et al., 2021; Sverdrup et al., 2023; Wang

et al., 2018), though there are many parallels—a treatment assignment policy in that literature is often a

function of observable covariates and subject to constraints related to its functional form, budget, or fairness

considerations, and it can be useful to reformulate budget-constrained problems as (fractional) knapsack-

style problems (Sun et al., 2021; Sverdrup et al., 2023) as we do here. Björkegren et al. (2022) and Haushofer

9Specifically, they assumed that the population consists of pre-defined, mutually-exclusive groups with known income dis-
tributions, with no further predictors are available.
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et al. (2025) are particularly relevant, as they study welfare-maximizing allocations of cash transfers (of a

fixed size) in the presence of treatment effect heterogeneity.10 Future work might combine methods like

theirs with those in this paper in order to learn dynamic transfer policies that efficiently minimize poverty

over time, taking advantage of the fact that some recipients have predictably higher investment propensities

and returns (i.e., are more likely to “graduate”) in response to a large initial transfer.

2 Targeting Transfers via Statistical Learning

Let X := Rd denote the space of observable characteristics and let Y := R+ denote the space of consumption

values. We assume that a country has a population distribution F from which the observable characteristics

and consumption of units can be drawn.

Assumption 1 (Sampling Model). A country has a population distribution F from which pairs of observable

characteristics and per-capita consumption (Xi, Yi), where Xi ∈ X and Yi ∈ Y, can be drawn i.i.d. for units

i = 1, 2, . . . n.

Cash transfer policies are common in low- and middle-income countries and, due to the cost and incentive-

compatibility considerations noted above, are typically allocated based on imperfect proxies Xi ̸= Yi of living

standards. Given an available (per-unit) budget B ∈ R+, define a transfer policy as a mapping from the

space of observable characteristics X and possible budgets R+ to a nonnegative cash-transfer amount, i.e.

t : X × R+ → R+. This must satisfy the budget constraint EF [t(X;B)] ≤ B.

We define a unit’s post-transfer standard of living as Yi + t(Xi;B). In effect this means analyzing the

consumption the unit could attain if they consumed their entire transfer and if Yi were unaffected by transfers.

This formulation is standard in the literature on optimal transfer policies (Bourguignon and Fields, 1990;

Glewwe, 1992; Kanbur, 1987; Ravallion and Chao, 1989) and we view it as conservative in the sense that

units who save or invest a portion of their transfer are presumed at least weakly better off by doing so. In

practice, reviews by Banerjee et al. (2017) and Crosta et al. (2024) find that transfers tend to increase labor

supply and earnings from other sources.11 Note also that this formulation precludes general equilibrium

effects; if transfers stimulate the economy, as Egger et al. (2022) and Gerard et al. (2021) find, then our

approach is conservative in this regard.

Given this setting, there are many possible ways to learn transfer policies from data. As a point of

reference we first outline a widely-used approach for allocating cash transfers based on a proxy means test

10For a more general review of the effects of cash transfers on recipients, see Bastagli et al. (2019) and Crosta et al. (2024).
11There is also a distinct question whether the rule that determines eligibility for transfers might reduce Yi by disincentivizing

effort. Evidence on this point from low income countries is sparse, though Banerjee et al. (2020) find little evidence that eligibility
rules distorted consumption choices in Indonesia.
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(PMT) (Alatas et al., 2012; Brown et al., 2018; Grosh and Baker, 1995; Hanna and Olken, 2018).

Definition 1 (Proxy Means Test). In a Proxy Means Test (PMT), observable characteristics, or “proxies,”

Xi are used to define the conditional mean consumption µ(x) := EF [Yi | Xi = x]. The conditional mean

consumption µ is then thresholded to determine the allocation of transfers to units the population, i.e.

tPMT(x;B) :=


t̄ µ(x) ≤ η(t̄, B),

0 µ(x) > η(t̄, B),

(1)

for some choice of maximum transfer size t̄ ∈ R+ and eligibility threshold η(t̄, B) that is increasing in B and

chosen so that PF [µ(X) ≤ η(t̄, B)] = B/t̄.

The PMT policy (1) is a binary policy because each unit can receive zero or some common amount t̄.

The maximum transfer size t̄ is selected by the policymaker but not necessarily learned from data.

Note that µ(·) is the function that minimizes EF

[
(Yi − µ̂(Xi))

2
]
the mean-squared error between Yi and a

predictor µ̂(Xi). If Yi can be predicted perfectly from observable characteristics Xi, then the PMT policy has

the desirable property that it will allocate transfers to the units with lowest consumption Yi. However, when

consumption Yi cannot be perfectly predicted from Xi, or there is uncertainty in Yi given Xi, then there is

no obvious formal link between minimizing mean-squared error and reducing the post-transfer poverty rate,

or any other poverty measures.

Given this, it may be possible to improve on a PMT’s poverty-reducing performance by explicitly learning

policies via minimization of a loss function, chosen to reflect the ultimate poverty reduction goal.

Definition 2 (Unrestricted Policies via Loss Minimization). For any loss function L : R → R, an optimal

unrestricted transfer policy is one which minimizes the expected post-transfer loss EF [L(Yi + t(Xi))] subject

to a budget constraint B, i.e. which solves

min
t(·;B):X→R+

{EF [L(Yi + t(Xi))] : EF [t(Xi;B)] ≤ B, t(x) ≥ 0 ∀x ∈ X} . (2)

Given data (Xi, Yi) ∼ F i.i.d. for units i = 1, 2, . . . n from a representative survey, a policymaker can

estimate the solution of (2) via empirical minimization of the loss. Note that based on the choice of L,

custom algorithms may be required to obtain the transfer policy.

The transfer policies obtained in Definition 2 are unrestricted in that they can allocate transfers of any

nonnegative amount. In practice many current programs allocate transfers in only a few different sizes, and

sometimes only two: zero, and some fixed positive amount. To understand the impact on costs of restricting

the support of transfers, we also study the problem of learning such “binary” policies.
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Definition 3 (Binary Policies via Loss Minimization). For any loss function L : R→ R, an optimal binary

transfer policy is one which minimizes the expected loss EF [L(Yi + t(Xi))] subject to a budget constraint

B and takes on only one non-zero value, i.e. which solves

min
t:X→R+,
t̄∈[0,c]

{EF [L(Yi + t(Xi))] : EF [t(Xi)] ≤ B, t(x) ∈ {0, t̄} ∀x ∈ X}. (3)

Note that this approach requires learning both the optimal transfer size t̄ and the eligibility rule t.

Loss minimization as in Definition 3, and Proxy Means Testing as in Definition 1, both yield binary

policies; the key difference is that the loss-minimization approach directly minimizes a post-transfer poverty

measure. The cash-transfer policy that solves the loss minimization problem (3) for a particular post-

transfer poverty measure yields the greatest possible reduction in that measure, while the PMT policy does

not provide formal poverty reduction guarantees.

The appropriate loss function depends on one’s definition of poverty. This is a classic topic in economics,

with seminal contributions from Sen (1976), Foster et al. (1984), and Greer and Thorbecke (1986), among

others. One important idea in this literature was that a measure of poverty should be sensitive to changes

in the living standards of people below a given poverty line. Nevertheless, the poverty measure that is most

easily understood and widely used in public discourse is one that lacks this feature: the poverty rate.

Example 1 (Poverty Rate). Given a poverty line c ∈ R+, the pre-transfer poverty rate is the fraction

of units in the population whose per-capita consumption falls below the threshold, i.e. PF [Yi < c]. The

post-transfer poverty rate is PF [Yi + t(Xi) < c].

We can also consider minimizing other measures such as the poverty gap index, which is sensitive to

changes below the poverty line.

Example 2 (Poverty Gap Index). Given a poverty line c ∈ R+, the pre-transfer poverty gap index is the

average shortfall from the poverty line relative to the poverty line, i.e. EF [(c− Yi)+/c]. The post-transfer

poverty gap index is, analogously, EF [(c− Yi − t(Xi))+/c].

Both the poverty rate and the poverty gap index are special cases of the class of FGT-α indices studied

by Foster et al. (1984) and Greer and Thorbecke (1986), defined as follows.

Example 3 (FGT Index). Given a poverty line c ∈ R+ and any α ≥ 0, the pre-transfer FGT-α index is

EF [I(Yi < c) · (c− Yi)α]. The corresponding post-transfer index is EF [I(Yi + t(Xi) < c) · (c− Yi − t(Xi))
α].

The FGT-0 index corresponds to the poverty rate and the FGT-1 index corresponds to the poverty gap.
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2.1 Weakly Equitable Policies

Due to the emphasis on the poverty rate in public discourse, it may be tempting to learn transfer policies

via minimization of the empirical poverty rate as in Example 1, as this approach directly seeks the greatest

reduction in the poverty rate under a limited budget. However, in the setting where the policymaker has

perfect information on consumption, i.e. Xi = Yi, it is well known that rate minimization yields a policy

family that prioritizes transfers to the “richest poor” (Bourguignon and Fields, 1990).12 This is because the

post-transfer poverty rate can be minimized more efficiently by raising those very close to the poverty line

over it than raising those who further away. To rule this out we introduce the following notion of equity,

which prioritizes transfers to the worst-off units.

Definition 4 (Weakly Equitable Policy). A family of policies t(x;B) is weakly equitable with respect to a

population distribution F if transfers are monotone increasing in budget, i.e. let B,B′ ∈ R+, then

B ≥ B′ =⇒ t(x;B) ≥ t(x;B′) ∀x ∈ X , (5)

and if incremental transfers are monotone decreasing in post-transfer consumption, i.e. let x, x′ ∈ X and

budgets B,B′ such that 0 ≤ B′ ≤ B, then

FY+t(X;B′)|X=x ⪯SD FY+t(X;B′)|X=x′ =⇒ t(x;B)− t(x;B′) ≥ t(x′;B)− t(x′;B′). (6)

By Definition 4, a weakly equitable policy family maintains or increases transfers to units as the bud-

get expands and allocates incremental funds to the worst-off group in terms of post-transfer consumption.

The latter property generalizes the requirement that transfers be monotone decreasing in (pre-transfer) con-

sumption.13 To build intuition for the generalization it may be useful to consider gap minimization in the

full-information case; here, the weakly equitable policy amounts to a floor on post-transfer consumption.

Clearly, rate minimization is not per se weakly equitable in the perfect information regime, i.e. when

Xi = Yi. This raises the question of whether it is weakly equitable in the more realistic regime where policy

is based on imperfect proxies, i.e. there is uncertainty in Yi given Xi. The following assumption makes

concrete this notion of imperfect proxies.

12In particular, and under the additional condition that the budget is not large enough to lift all units above the poverty
line, i.e. 0 < B < EF [(c− Yi)+], and Yi has continuous support under F , the rate-minimizing policy is

t(y;B) = (c− y)+ · I(η(B) < y < c), (4)

where η(B) ∈ (0, c) and η(B) is decreasing in B. Clearly, transfers are not allocated to the worst-off units.
13To see this, consider (6) with B > 0 and B′ = 0; then

FY |X=x ⪯SD FY |X=x′ =⇒ t(x;B) ≥ t(x′;B). (7)
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Assumption 2 (Imperfect Proxies). The conditional distribution FY |X=x is supported on an interval Y ⊆

R+ that contains [0, c], has continuously differentiable density fY |X=x, and EF

[∣∣ ∂
∂Y log fY |X=x(Y )

∣∣ | X = x
]
<∞

for all x ∈ X .

Theorem 1 then demonstrates the negative result that, in such an environment, we cannot guarantee

that policies that minimize any nonconvex loss function are weakly equitable:

Theorem 1. Suppose Assumption 1 holds. Consider Definition 2 with some loss function L that is decreas-

ing, integrable on R+, and bounded on R+. If L is nonconvex, then there exists a population distribution F ,

satisfying Assumption 2, under which the optimal policy family tL(x;B) is not weakly equitable.

This result applies in particular to the poverty rate loss function (Example 1), which is nonconvex.

Fortunately, the opposite also holds for a broad class of relevant poverty measures.

Theorem 2. Suppose Assumption 1 holds. Consider loss minimization in Definition 2. Let L be a loss

function that either is (a) decreasing, strictly convex, differentiable, and bounded below by C > −∞ or (b)

is proportional to the loss function of an FGT index with α ≥ 1 (Example 3). Then, for any population

distribution F that satisfies Assumption 2, there exists a unique optimal policy tL induced by solving (2) and

tL is weakly equitable with respect to F .

Theorem 2 provides the positive result that minimization of a convex poverty measure yields weakly

equitable policy families. However, one might worry that this approach yields policies that are cost-ineffective

at reducing the more familiar poverty rate metric. To help navigate this trade off we next show that

minimizing one particular convex loss function—the poverty gap index (Example 2)—yields guarantees on

both weak equity and poverty rate reduction. The first point is immediate, since the poverty gap index

satisfies the conditions of Theorem 2. In terms of formal guarantees on poverty rate reduction, we first show

that gap minimization solves a worst-case version of rate minimization: it is equivalent to minimization of

the worst-case conditional poverty rate among covariate-defined subgroups of the population.14

Lemma 3. Suppose that Assumption 1 and Assumption 2 hold. Consider gap minimization as specified in

Example 2. The optimal policy that solves (2) also solves

min
t:X→R+

{
max
x∈X

PF [Y + t(X) < c | X = x]

}
: EF [t(X)] ≤ B, t(x) ≥ 0 ∀x ∈ X . (8)

Second, we show that gap minimization and rate minimization are equivalent in certain settings where

rate minimization itself is weakly equitable.

14Lemma 3 is closely related to an observation of Kanbur (1987), who studies gap minimization in a population consisting of
two groups and finds that relatively more should be spent on the group with the higher poverty rate.
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Assumption 3 (Location Family). The conditional distributions FY |X=x come from a location family and

have strictly increasing density on [0, c] for all x ∈ X .

Lemma 4. Suppose that Assumption 1 and Assumption 3 hold. Then the optimal policy that solves (2)

when the loss function is the poverty gap index (Example 2) also solves (2) when the loss function is the

poverty rate (Example 1).

Given the desirable equity and poverty rate reduction guarantees of gap minimization, our empirical

analysis will focus on gap-minimizing policies, while also presenting rate-minimizing policies to examine how

much more the poverty rate could be reduced if this equity condition were ignored.

3 Data Sources and Uses

Table E.2 lists the household surveys, in the indicated countries and years, for which we learn transfer policies.

In most cases, we use data from the survey on which the most recent estimates of the headcount poverty

rate in the World Bank’s Poverty and Inequality Platform (pip.worldbank.org) are based; in a few cases,

these data are not publicly available, and we therefore use an alternative or earlier source.15 All surveys are

nationally representative and contain detailed information on household expenditure and self-production,

as well as data on various other household, location, and regional characteristics. Most are part of the

World Bank’s Living Standards Measurement Study (LSMS), its flagship program to collect high-quality,

standardized household surveys on poverty and welfare (World Bank, 2014), and include a consumption

aggregate. The exception is India’s 2022-23 Household Consumption Expenditure Survey for which we we

construct our own; see Appendix D.2.1. In total, the sample includes 19 countries that collectively account

for 43% of the world’s extreme poor.16 These countries vary meaningfully in their headcount poverty rates,

from 3% (in Colombia) to 73% (in Malawi). The poverty rates we estimate from the survey data are generally

close to the World Bank estimates for the corresponding country and year, with an average difference of 1.6

percentage points.17

The variables we use from the survey data are the household consumption aggregate, household size,

household sampling weight, and covariates Xi, where i indexes households. We compute the household per

capita consumption Yi in 2017 PPP USD by converting the reported household consumption aggregate into

2017 PPP USD per day and dividing by household size. As is standard, this approach treats all individuals

15While we have made every effort to obtain the most recent nationally representative consumption survey for each country,
in many cases several years have passed since the survey was conducted. Our estimates should thus be literally interpreted as
the cost of reducing poverty at the time of the most recent survey.

16As of 25 August 2025, as computed from World Poverty Clock poverty rate estimates.
17In Ethiopia we obtain a much closer match if we use the adult-equivalence scales provided in the survey data, but we do not

in order to maintain consistency with the Poverty and Inequality Platform’s methodology (World Bank, 2025a). This explains
the difference between our estimated poverty rate of 43% and the World Bank’s estimated rate of 32%.
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in the household as having equal consumption. We compute an analysis weight for each household by

multiplying its household-level sampling weight by its size.18

Selecting covariates requires some judgment. Conceptually, we wish to select only characteristics that

are plausibly verifiable, to limit scope for strategic behavior by potential recipients (Grosh and Baker, 1995;

Björkegren et al., 2021) and make it easier to hold program staff accountable for enforcing eligibility criteria

(Niehaus et al., 2013). We operationalize this idea as follows. First, we identify a collection of proxy means

tests actually implemented in practice in a variety of low- and middle-income countries.19 We take the

union of the predictors used in these PMTs, which yields a list spanning six broad categories: household

demographics, human capital, household assets, livelihood activities, geographic indicators, and community

characteristics. Where appropriate we generalize from the specific variables used in past PMTs; if a PMT

included a refrigerator as a predictor, for example, we would include all large household appliances on our

list of eligible predictors. At the same time, we omit a few variables which, though they have been used in

the past, would in our judgment typically be difficult to verify. Examples include the age of the household’s

primary dwelling, measures of food (in)security, indicators for use of fertilizer, or total income. Appendix

D.1 provides the rubric for covariate selection. We then select only variables from this list from each living

standards survey for use as predictors in our analysis. The resulting datasets are available online.20

We use data from each survey to learn transfer policies via empirical minimization of the poverty rate on

the survey data; empirical minimization of the poverty gap; and proxy means testing. Explicit characteriza-

tions of the empirical rate-minimizing and gap-minimizing policies and algorithms for deriving them are in

Appendix A. Here we provide a brief summary of the issues that arise and the methods we use to address

them.

Unrestricted gap minimization is a convex problem, and thus tractable. Optimal transfers are (we show)

functions of the conditional (on covariates) quantile functions of the distribution of living standards. We

learn these conditional quantile functions for a grid of quantiles using deep learning, minimizing pinball loss

(Koenker and Bassett, 1978). When we impose the added constraint that policies must be binary, however,

the problem becomes non-convex and requires more care. We express it as a nested optimization over (i) the

size of the transfer, and then (ii) the eligibility rule used to determine which households received a transfer

of that size. Learning the latter requires learning the expected change in loss associated with a transfer of

the specified size to each household, effectively yielding a ranking of households; we do so using empirical

18The same adjustment is used by the World Bank to construct poverty estimates for the population of individuals in a
country rather than the population of households. See here for details

19These were Bangladesh (Kidd and Wylde, 2011), Colombia (Camacho and Conover, 2011), India (Niehaus et al., 2013;
Planning Commission, 2011, 2012), Indonesia (Kidd and Wylde, 2011; Alatas et al., 2012; Fernandez and Hadiwidjaja, 2018),
Malawi (Handa et al., 2022), and Peru (Hanna and Olken, 2018).

20Our datasets are available here.
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risk minimization via deep learning. Nesting this algorithm within a grid search over values of the transfer

yields the solution. The learning procedure for binary rate minimization is analogous to the binary gap

minimization procedure.

Unrestricted rate minimization, meanwhile, is an intrinsically non-convex problem. We solve it by first

showing that rate-minimizing transfers must have a specific structure: conditional on a given value x of the

covariates, they must either be at the boundaries (i.e. t(x) = 0 or t(x) = c), or satisfy fY |X=x(c− t) = α for

some common value α. Intuitively, this condition states that the number of people that would be lifted out

of poverty by marginally increasing the transfer amount must be the same for any values of x at which the

transfer amount is in the interior. We then show that, for any given value of α, this reduces the problem to a

fractional multiple-choice knapsack problem which can be solved using estimates of the covariate distribution

fX (for which we use the empirical covariate distribution) and of the conditional distribution fY |X=x (which

we learn using an extension of Lindsey’s method (Efron and Tibshirani, 1996)). Nesting this algorithm

within a grid search over values of α yields the solution.

All statistical learning methods described in Appendix A are tuned for out-of-sample prediction using

a validation set (Hastie et al., 2009). This implies that we do not need to limit the number of predictors

we use to guard against overfitting up front and lets us use predictor sets that are often larger than those

used in typical PMT exercises; our models use between d = 43 and d = 424 predictors (last column of Table

E.2). That said, our intuition based on initial exploratory work is that one could use substantially smaller

predictor sets without much performance degradation, something we plan to explore in future work. Finally,

note that we will not be able to take full advantage of large predictor sets when learning the conditional

distributions needed for unrestricted rate minimization, as the sample complexity of density estimation scales

exponentially in the data dimension; we will return to this point in discussing the results below.

Implementing these learning methods requires that we specify precise training, hyperparameter selection,

and evaluation procedures. To prevent iterative analysis of the same data, which could lead to “human-

in-the-loop” overfitting, we prescribed these procedures in advance in a Data Use Plan (DUP). A complete

copy of this plan is available online;21 its key features are as follows.

First, we randomly partition each dataset into a 60% training sample and a 40% test sample. We do so

maintaining geographic stratification at the level at which the survey has complete coverage. For example, if

a survey covered all districts but not all subdistricts within districts, we would maintain stratification at least

to the district level when partitioning. We evaluate subsample sizes for this purpose using simple observation

counts; where possible, we ensure that this also splits the sampling weights in the same proportion.

Second, we use the training set to learn hyperparameters for the policy learning algorithms. These include,

21Our data use plan is available here.

14

https://drive.google.com/file/d/1gdIZD1Mj3rQSdzZS1Fc0mCIASry5_lEa/view?usp=sharing


for example, the topology of the neural networks used to fit nuisance parameters for gap minimization or

binary rate minimization; the number of quantiles to fit during quantile regression for unrestricted gap

minimization; the dimensionality of the predictor set used for unrestricted rate minimization; and various

learning parameters, among others. We learn distinct hyperparameters for each policy type we wish to learn,

learning them from a 67% sub-sample of the training set and evaluating them based on the performance

they induce on the complementary 33% sub-sample (the validation set). We also considered two alternative

approaches: hard-coding hyperparameters based on prior intuition, or learning them from synthetic data

generated from the training set via a generative adversarial network (Athey et al., 2024). When tested in our

“sandbox” environment (see below), we found that all three approaches performed similarly. We therefore

chose to learn hyperparameters directly from the training data as this approach is substantially simpler than

using synthetic data, while providing some protection (relative to hard-coding) against “unexpected” data

distributions we might subsequently encounter.

Third, with hyperparameters in place, we use the training set to estimate all nuisance parameters neces-

sary for learning the transfer policies. After that, with access to the covariates from the test set, we generate

the transfer schedule {t(Xi)} for all units in the test set. Finally, we use the held-out outcomes Yi from

the test set to evaluate the transfer schedules. We refer to this paradigm as transductive learning. This

is the relevant paradigm when the policymaker expects to the know the values of the covariates (though

not the outcome) for the entire target population when deciding on a policy. This is the case when, for

example, a government conducts a census gathering covariate information before finalizing the transfer rule

for a program.

The main exception to our otherwise rigid implementation of this plan involves the 2018–2019 Integrated

Household Survey in Malawi. We have used this survey as a sandbox environment in which to iteratively

experiment with various approaches and guide the choices to which we subsequently committed in our Data

Use Plan. Results based on this survey should therefore be interpreted with this caveat in mind. That

said, our educated best guess is that any resulting over-fitting to the Malawi data is inconsequential to our

main conclusions. Any other adjustments we made to the methodology over time are noted in a changelog

within the DUP itself; to date the most salient of these was the modification of the analysis weights to reflect

household size as well as survey sampling weights, which we had initially neglected to specify.

4 Empirical Results

To build intuition we first present core results for a single country, Malawi, one of the world’s poorest nations

and the country we used as a “sandbox” for experimentation, as noted above. Next, we apply our methods
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Figure 1: Gap- and Rate-minimizing Policy Costs in Malawi
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This figure reports the costs, in billions of nominal 2023 USD annually, of the indicated optimal transfer policies learned for
Malawi (n = 11434 , d = 140). The left-hand panel plots these against the post-transfer poverty rate, while the right-hand
panel plots these against the post-transfer poverty gap index.

to the full sample and present the aggregate policy cost of achieving uniform poverty goals.

4.1 Malawi Case Study

Figure 1 presents results based on the Fifth Malawi Integrated Household Survey 2018-2019, a survey of

n = 11434 households that contains d = 140 plausibly verifiable covariates. The figure compares the

performance of gap-minimizing and rate-minimizing transfer policies by plotting the total annual policy

cost (in nominal 2023 USD) of achieving a particular poverty goal (either the post-transfer poverty rate or

post-transfer poverty gap index). Blue lines indicate methods that minimize the poverty gap; orange lines

indicate methods that minimize the poverty rate. The solid and dashed lines correspond to unrestricted and

binary policies, respectively.

Several patterns emerge from the Malawi case study, which in general will also hold in the other countries

we analyze. First, unrestricted policies are less costly than binary ones (i.e., the solid lines fall below the

dashed lines). This is expected, since unrestricted policies can allocate smaller transfers to households closer

to the poverty line—but in practice the differences are fairly modest. Second, while rate minimization is

more effective than gap minimization at achieving modest poverty rate goals—e.g., reducing the post-transfer

poverty rate to 40%—gap minimization is equally as effective when the poverty rate goal is more ambitious,

e.g., reducing the rate to 10% (Figure 1a). We hypothesize that this is because, in order to achieve more

ambitious objectives, the rate-minimizing policy will have to allocate transfers to households that are well

below the poverty line, reducing the difference in cost between rate minimization and gap minimization.

Practically, it implies that one can reduce the poverty rate using the weakly equitable policies obtained from
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Figure 2: Gap minimization v.s. Oracle, UBI, and PMT Benchmarks in the Full Sample
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This figure reports the costs, in billions of nominal 2023 USD annually, of the indicated optimal transfer policies learned for
the full sample of countries listed in Table E.2. The left-hand panel plots these against the post-transfer poverty rate, while
the right-hand panel plots these against the post-transfer poverty gap index.

gap minimization at little penalty in terms of cost-effectiveness. Policies that minimize the poverty gap are

analogously more effective at reducing the gap (i.e., the blue lines fall below the orange lines in Figure 1b),

and this difference appears consistently across a range of poverty gap goals.

4.2 Multi-Country Analysis

We now present results aggregated across the full sample of 19 countries, with the underlying country-specific

results available in Appendix E. We aggregate by calculating the cost of achieving a given level of a given

poverty metric in every country in our sample, and summing these. These are thus conservative estimates

relative to the cost of achieving the same level of poverty on average, since this approach imposes a degree

of equity between the countries in our sample. We may explore relaxing this requirement in future work.

We present cost curves in their entirety, but also discuss in more detail the costs of achieving a 1% poverty

rate in each country using policies learned via empirical poverty-gap minimization. Note that achieving this

target globally would imply that the global poverty rate is 0.8%.

Figure 2 presents the core results, plotting total annual policy cost (in nominal 2023 USD) against the

resulting headcount poverty rate (left-hand panel) or poverty gap index (right-hand panel) as above. The

primary policy of interest here is the unrestricted gap-minimizing policy, indicated in blue. The binary policy

minimizes the same objective, but adds the restriction that within each country, transfers must either be

zero or some common positive amount. Other series provide relevant benchmarks. The “UBI $2.15” series

indicates the (constant) cost of giving every individual $2.15 2017 PPP per day, without any targeting. The

“UBI by Country” series indicates the cost of giving every individual within a given country the same transfer

amount less than or equal to $2.15. The “PMT (Lasso)” series in red corresponds to allocating transfers with
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Figure 3: Gap- v.s. Rate-minimizing Policy Costs in the Full Sample
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This figure reports the costs, in billions of nominal 2023 USD annually, of the indicated optimal transfer policies learned for
the full sample of countries listed in Table E.2. The left-hand panel plots these against the post-transfer poverty rate, while
the right-hand panel plots these against the post-transfer poverty gap.

a proxy means test; specifically, we fit conditional mean consumption via lasso regression (Hanna and Olken,

2018) and give individuals with mean predicted consumption below a threshold a transfer of $2.15 2017 PPP

per day. Finally, the right-hand panel includes an “Oracle” series in green indicating the (hypothetical) cost

of achieving a given poverty gap index with a weakly equitable policy if full information on each household’s

consumption were available. This is a useful benchmark given the salience of the global poverty gap in recent

discourse about the cost of ending poverty (cf. Chandy et al., 2016; Kharas and McArthur, 2023; Sumner

and Yusuf, 2024),22 but it is not a policy that could feasibly implemented since program administrators do

not directly observe the exact amount needed by every household in the population.

Overall the results show that the lowest-cost policies cost several times more than the aggregate poverty

gap, but also substantially less than the UBI and other benchmark policies. To reduce the poverty rate in

all countries to 1%, for example, would cost $149B per year, which is 5.4 times the oracle cost of ($28B),

but 21% of the cost of a $2.15 UBI, and 55% of the cost of a country-specific UBI. Similar ratios hold as

we vary the desired post-transfer poverty rate. As the post-transfer poverty rate (or gap) approaches zero,

however, the costs of all feasible policies increase at an increasing rate, as expected: requiring any of these

algorithms to find the last needles in the population haystack becomes increasingly costly. In addition, we

find that unrestricted gap minimization is 59% the cost of PMT, highlighting the performance benefits of the

loss minimization approach. Lastly, the binary gap-minimizing policy costs 35% more than the unrestricted

gap-minimizing policy. This implies that, if politically or logistically expedient, the transfer policy can be

reduced to a simple eligibility rule without massively increasing its cost.

22We do not report oracle costs of achieving poverty rate goals as they are not a particularly useful benchmark: the only way
to bring even a single household up to the poverty line while maintaining weak equity is to bring all households up to the line.
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While none of the policies examined in Figure 2 are optimized to reduce the poverty rate, the left-hand

panel shows that gap minimization still substantially reduces the poverty rate. This suggests that it would be

possible to implement gap-minimizing policies, which are weakly equitable, while still communicating with

broad audiences about progress in terms of the poverty rate, a more familiar concept. That said, Figure 3

directly contrasts the empirical performance of policies optimized for the rate as opposed to the gap. Axes are

as in Figure 2, but here the policies include two that minimize the rate (using either unrestricted or binary-

valued transfers) as well as the corresponding policies minimizing the gap. The right-hand panel shows that,

as expected, policies optimized for the gap consistently reduce the gap at a lower cost than the corresponding

policies optimized for the rate. While in the infinite-population regime, we expect rate minimization to

obtain lower post-transfer poverty rate than gap minimization, the left-hand panel shows empirical gap

minimization can actually perform somewhat better at reducing the rate than empirical rate minimization.

A first reason that this occurs is that because under the hood, empirical rate minimization must solve a

more challenging statistical problem than empirical gap minimization; empirical rate minimization relies on

conditional density estimation, while empirical gap minimization relies on quantile estimation. This task

has higher sample complexity and also requires a bespoke algorithm. Second, empirical gap minimization

can leverage richer covariate information than empirical rate minimization. Since the sample complexity of

density estimation scales exponentially in the data dimension, we tune the number of covariates used in our

conditional density estimation algorithm. In contrast, such feature selection is not required for our quantile

estimation algorithm. In terms of finite-sample performance, we find little reason to prefer rate minimization

in terms of performance.

The full country-specific details underlying these results are presented in Appendix E in Figure E.1.

Generally speaking, the comparisons above for the sample of countries as a whole generally hold within each

country as well. Reducing the poverty rate to 1% with an optimal policy costs between 2.4 and 13.6 times

the aggregate poverty gap (Figure 4), but still substantially less than the cost of doing so using UBI at the

level of the international poverty line. In some of the poorest countries, however, the cost of achieving this

goal using an optimally sized UBI is not much greater than the cost of doing so using variably sized transfers

(Figure 5), reflecting the fact that most households in these countries are below the poverty line.

4.3 Variations and extensions

This section reports how the minimized costs of achieving poverty goals vary with parameters of the problem.

For simplicity of exposition we focus discussion primarily on the cost of achieving a national poverty rate of

1% in each country, as in our summary discussion above, rather than on comparative statics for the full cost
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Figure 4: Cost Ratio of Feasible Gap-Minimizing Policy to Aggregate Poverty Gap
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This figure reports, for each country in Table E.2, the cost ratio between the gap-minimizing policy that achieves a 1% post-
transfer poverty rate and the aggregate poverty gap.

Figure 5: Cost Ratio of UBI (Variable) to Gap Minimization
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This figure reports, for each country in Table E.2, the ratio of the cost of a policy that achieves a 1% post-transfer poverty
rate by giving a common transfer amount to all individuals, and the cost of a policy that does so using transfers that vary
person-to-person learned via gap minimization.
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Figure 6: Policy Costs for Poverty Reduction under $3.00 (2021 PPP) Poverty Line
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This figure reports the costs, in billions of nominal 2023 USD annually, of the indicated optimal transfer policies learned for
the full sample of countries to reduce extreme poverty, as defined as living on less than $3.00 (2021 PPP) per day. This figure
is analogous to Figure 2, which reports costs to reduce extreme poverty under the $2.15 (2017 PPP) poverty line.

curve.

We first consider an alternative poverty line. The $2.15 2017 PPP line is a well-established benchmark

in both public and policy discourse, derived (via periodic inflation-indexing) from the famous concept of

“dollar-a-day” poverty introduced by the World Bank in 1990 and subsequently enshrined in the Millennium

Development Goals and the Sustainable Development Goals. Yet it is also a very low bar. Lant Pritchett,

among others, has argued forcefully that actors working to promote economic development should view

“dollar-a-day” poverty as a milestone along the way, not as an end goal (Pritchett, 2024; Pritchett and

Viarengo, 2025), and in the World Bank’s 2025 revision to its global poverty line it incorporated not only

new information about prices, but also an upward shift in the real standard of living used to define the

threshold. This was a meaningful change, increasing by some 125 million the number of people defined as

living in extreme poverty in 2022 (Foster et al., 2025).

Our methods and data can be used flexibly to calculate the cost of achieving poverty goals with respect

to any poverty line. Here we redo our analysis using the World Bank’s new $3.00 2021 PPP line, which is

of intrinsic interest as well as serving to illustrate the consequences of setting a higher bar more generally.

Figure 6 replicates Figure 2, but using this higher line to define extreme poverty. Achieving a poverty rate of

1% in every country in our sample using policies learned via empirical poverty-gap minimization costs $228B

per year in nominal 2023 dollars. This is 1.5 times the cost (again, in nominal 2023 dollars) of achieving the

same rate when poverty is defined using the $2.15 2017 PPP standard. This difference quantifies the extent

to which in which ending extreme poverty under the new definition is indeed a substantially more ambitious

goal than under the old.

While setting more ambitious goals necessarily increases costs, other variations could help to lower them.
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We are examining several of these in ongoing work. First, rather than requiring a uniform poverty rate in

every country, we can allow for variation in post-transfer poverty rates across countries, and thus achieve the

same global rate at a (weakly) lower total cost but with greater inequity across countries. Second, we can

include finer-grained regional indicators as covariates in our predictive models. This will tend to improve

accuracy and thus lower transfer costs, but at the implicit cost of requiring that future living standard

surveys be conducted in more regions than they were in the original data source. And third, we explore

whether non-traditional covariates sourced from newer digital data sources—such as satellite imagery (Jean

et al., 2016; Chi et al., 2022) or cell phone networks (Blumenstock et al., 2015; Aiken et al., 2023)—could

enable accurate targeting, while also reducing (or eliminating) the cost of collecting traditional covariates

through in-person surveys. We expect to share results from these exercises in future drafts.

5 Discussion & Implications

Table E.4 summarizes the estimated cost of reducing the national poverty rate to 1% in each country in

our sample, along with reference information on the scale of national GDP and public revenue. Note that

achieving this globally would yield a global poverty rate of 0.8%. We conclude in this section by discussing

some further potential implications of redistribution on the scale implied by those figures.

The first concerns sources of funds. Figure 7 plots the amount of money spent in each country, under the

learned policy which reduces the global poverty gap to 1%, as a proportion of that country’s GDP (top panel)

and total government revenue (bottom panel). In the average country, implementing such a scheme would

cost 11% of GDP. To put this into context, this is equivalent to roughly 70 years worth of the growth over time

of tax revenue relative to GDP that Besley and Persson (2014) document in a sample of 18 countries during

the 1900s (see Figure 3 in their paper). Overall, it appears plausible that many countries could contribute

substantially to the cost of policies like these, but implausible that many could finance them entirely on

their own. This assessment is similar to that reached by Hanna and Olken (forthcoming). They calculate

the costs of transferring PPP $2.15 to everyone below the poverty line, taking this as a rough approximation

to the true cost of eliminating poverty. They note in particular that “in principle, one could bring everyone

to the poverty line for less money than this if one could give larger transfers to those further away from the

poverty line” but also that “this may understate the extent of the problem, since giving transfers only to

those below the poverty line assumes that one can solve targeting challenges...” After taking both of these

issues into account, the policies we learn here end up costing a similarly large share of national income.

Funding such policies using transfers from abroad, on the other hand, would raise additional questions

about their macroeconomic effects. One can think of these in two parts: the effects of converting foreign
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Figure 7: Policy Cost as a Percentage of GDP and of Government Revenue
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This figure plots, for each indicated country, the ratio of the cost of a policy that achieves a 1% poverty rate via gap minimization
to the country’s GDP in the year the underlying survey was conducted (top panel) and to total government revenue in that
year (bottom panel). We obtain country GDP from the World Bank (data source, accessed 13 August 2025) and government
revenue percentages by country from the IMF (data source, accessed 14 July 2025).

currency to Local Currency Units (LCUs), and the effects of recipients spending or saving those LCUs. Both

are large topics in their own right, and beyond the scope of our analysis here, but we will remark briefly on

related work.

With respect to currency conversions, the amounts in question are several multiples of status quo aid flows.

In our sample of countries, for example, the average country received 6% of GDP in 2023 and would require

11% of GDP to implement a policy that reduces the national poverty rate to 1% in each country (Table

E.4). Recent work on the effects of currency demand shocks generally suggests that additional currency

purchases on this scale would have meaningful effects on rates of exchange, at least in the short run. One

approach uses (instruments for) countries’ open-market operations as a source of identifying variation; Adler

et al. (2019), for example, estimate that a purchase of 1 percentage point of GDP causes a depreciation of

the real exchange rate of 1.4–1.7%. Another approach uses shocks to currency demand caused by changes

to the composition of global indices of emerging market bonds; these are arguably more clearly exogenous,

but also harder to size, as passive funds’ responses are mechanical and thus estimable but those of actively-

managed funds are unknown. This approach yields larger elasticities. For example, Beltran and He (2025)

estimate using this approach that in a sample of countries an inflow of 0.09% of domestic GDP led to a 1%
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appreciation of the exchange rate in the days immediately following, with effects dissipating only partially

over the subsequent 12 months (see Table 5.1 and Figure 4 in their paper). Any effects of aid inflows on

exchange rates would then be mitigated to the extent that transfer recipients subsequently purchased items

with imported components. That said, the broad point remains that effects on exchange rates seem likely

to be large enough to matter.

With respect to domestic spending, some classic lines of thinking about the process of development imply

that this might affect economic growth, through a demand channel (as in “big push” models such as that of

Murphy et al. (1989)) or a credit channel (Stiglitz and Weiss, 1981), among others. Recent evidence from

large-scale experiments or natural experiments broadly supports this view: Egger et al. (2022) estimate that

the economies of villages in rural Kenya expanded by $2.5 for every $1 transferred into them, and Gerard

et al. (2024) similarly find substantial effects of transfers on economic activity in Brazilian municipalities.23

Any such knock-on benefits need not accrue proportionally, however—in fact, Haushofer et al. (forthcoming)

find that the transfers in Egger et al. (2022) had somewhat larger effects on the income and consumption of

households that would otherwise have been somewhat less poor. This is one reason, as well as for simplicity,

that we have abstracted from spillovers here.

Another natural and related question is whether there is some upfront outlay that would be sufficient to

achieve a given poverty goal on a lasting basis, as opposed to the flow-cost approach we have taken here.

This of course inescapably requires assumptions about rates of return. One way to bound the up-front cost

is to simply calculate the size of the endowment required to yield the annual flow expenditures we calculate,

using any rate of return deemed plausible. But it may be possible to do better still by front-loading transfers

to households themselves, as some of them may have access to much-higher-return investment opportunities

than endowment managers do (see, for example, Haushofer et al. (forthcoming) and Hussam et al. (2022),

among many others). Here the volatility of poverty would pose a challenge. Historically, households have

moved back and forth across the extreme poverty line quite frequently (Armentano et al., 2025; Baulch and

Hoddinott, 2000), so that the amount one would ideally wish to transfer to any given household could vary

substantially from year to year (or even month to month; see Merfeld and Morduch, 2024). A related issue

is that policies learned from data at a given point in time may not perform as well in subsequent years

if the relationship between consumption and PMT covariates changes over time (Aiken et al., 2025). A

natural extension of our framework would incorporate techniques for addressing such ‘covariate shift’ in the

statistical learning framework of Section 2 (cf. Quinonero-Candela et al., 2008; Koh et al., 2021).

While we focus on a sample of countries that meet the criteria defined above in Section 3, it is natural to

23While the transfers which Gerard et al. (2024) were largely domestically financed, they study the effects of gross transfers
(not net of taxation), which are the relevant ones for thinking about the impacts of externally financed transfers.
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wonder what the results imply for the cost of ending poverty at a global scale. We consider in particular the

cost of reducing the global poverty rate to 1%. To do so it is sufficient to obtain a national poverty rate of

1.4% in all countries that currently have higher poverty rates (a target slightly higher than 1%, because there

are some countries in the world with extreme poverty rates that are already essentially zero). To estimate the

costs of achieving this target in the countries that are not in our current sample, we estimate the relationship

between the ratio of the feasible policy cost to the poverty gap and the poverty rate within our sample, and

then use this to predict the feasible policy cost to poverty gap ratio for other countries.24 To be clear, this

extrapolation is purely illustrative. In future work we plan to extend the analysis to additional countries,

and it is entirely possible that the cost ratio will vary in those. Moreover, and as noted above, many of

the surveys on which the input poverty rate and poverty gap index figures are based were conducted prior

to the COVID-19 pandemic, and so some additional forward extrapolation would be necessary to obtain a

truly current estimate. That said, the exercise may give us some sense of the scale of transfers potentially

involved. It yields an estimated cost of reducing the global poverty rate to 1% equal to 0.3% of global GDP,

or 0.5% of OECD GDP.25

In some senses this is an enormous figure. As a point of reference, major aid donors in the OECD gave

0.37% of GDP in 2023.26 Political support for foreign aid is of course ebbing rapidly as of this writing. But

in terms of sheer fiscal feasibility there is no question that wealthy countries could finance policies such as

this one. And in a broader sense it implies that ending poverty is no more costly than other, less inspiring

global priorities. The world spends seven times as much, for example—2.2% of global GDP—on alcoholic

beverages.27

24Specifically, we regress the ratio between a country’s feasible policy cost and poverty gap on its poverty rate in our sample,
yielding an R2 of 0.78. We then use estimates of the poverty gap index for out-of-sample countries from the World Bank to
obtain predicted feasible policy costs.

25Including China, the world’s second-largest economy and now a major international aid donor, lowers this figure to 0.39%.
26From Our World in Data. Accessed 11 April 2025.
27Estimated 2024 global alcoholic beverages market size: $2,413B as per https://www.fortunebusinessinsights.com/

alcoholic-beverages-market-107439, accessed 1 September 2025. Estimated 2024 GPD: $110,000B as per https://www.

imf.org/external/datamapper/NGDPD@WEO/OEMDC/ADVEC/WEOWORLD, accessed 1 September 2025.
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A Algorithms

In this section, we outline algorithms for learning unrestricted policies that minimize the poverty gap index

and the poverty rate, as well as binary policies. We also discuss the weakly equitable oracle policy.

A.1 Poverty Gap Minimization

We aim to solve (2) where the objective corresponds to the poverty gap index. In this case, (2) has a convex

objective and is straightforward to solve using convex duality. We provide a characterization of the optimal

gap-minimizing policy, a high-level overview for learning the optimal gap-minimizing policy in the population

regime where we have access to the population distribution F , and finite-sample implementation details.

Lemma 5. If L(z) = (c− z)+ and t = c, then the optimal policy that solves (2)

t∗gap(x) = (c− F−1
Y |X=x(λ

∗(B)))+. (9)

where λ∗(B) ∈ [0, 1].

Theorem 5 implies that the family of optimal gap-minimizing policies, each of which minimizes the

poverty gap index for a different budgets B, can be parametrized as

tλ(x) = (c− F−1
Y |X=x(λ))+

for λ ∈ [0, 1]. Given this functional form, learning the optimal gap-minimizing policy for a particular budget

B boils down to finding the appropriate choice of λ∗(B). We can obtain the optimal gap-minimizing policy by

discretizing the interval [0, 1] into into a grid of quantiles λ1, λ2, . . . λJ and selecting λ that yields EF [tλ(X)] =

B.

A.1.1 Finite-Data Regime

In realistic settings, we only have access to data sampled from F . In this section, we assume the true data

distribution F is unknown but we have access to a training set Dtrain = {(Xi, Yi)}ntrain
i=1 where (Xi, Yi) ∼ F

i.i.d., and we aim to optimize allocations for unlabeled samples Dtest = {Xi}ntest
i=1 where Xi ∼ F i.i.d. We

describe the algorithm for estimating the optimal gap-minimizing policy for a budget B.

First, we discretize the interval [0, 1] into a grid of quantiles λ1, λ2, . . . λJ . Second, estimate each qλj (·)
for j = 1, 2 . . . J with minimal distributional assumptions on F . Using the training set Dtrain = {(Xi, Yi)},
we estimate each q̂λj (·) by solving a conditional quantile regression problem for quantile λj via deep learning.

In our implementation, for each j, we train a neural network to minimize the pinball loss parametrized by

the quantile λj (Koenker and Bassett, 1978). Recall that the pinball loss is given by

Lpinball(z;λ) = λ · |z| · I(z ≥ 0) + (1− λ) · |z| · I(z < 0),

and we have that

qλ(·) ∈ argmin
q

EF [Lpinball(Y − q(X);λ)] .

Our implementation represents q with a neural network and solves the following empirical risk minimization
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problem

q̂λj (·) ∈ argmin
q

ÊF [Lpinball(Y − q(X);λj)] .

After estimating the conditional quantiles, we use covariates from the test set Dtest = {Xi}ntest
i=1 , estimate

the optimal transfer amount for each unit in the test set.

t̂λj
(Xi) := (c− q̂λj

(Xi))+.

For each λj , we can estimate the empirical policy cost. Finally, we can select the choice of λj so that

ÊF

[
tλj

(Xi)
]
= 1

ntest

∑ntest

i=1 t̂λi
(Xi) is closest to B.

A.2 Poverty Rate Minimization

We aim to solve (2) where the objective corresponds to the poverty rate. In this case, (2) is not straight-

forward to solve because it has a non-convex objective. Nevertheless, we provide a characterization of the

optimal deterministic rate-minimizing policy and outline an algorithm for learning a stochastic policy that

is guaranteed to obtain lower or equal poverty rate than the optimal deterministic rate-minimizing policy.

We also provide a high-level overview of the algorithm in the population regime where we have access to the

population distribution F and finite-sample implementation details.

In this section, we make the following technical assumption that the covariate space X is finite-dimensional

and discrete to permit t to be finite-dimensional because the existence of minimizers of non-convex functionals

over infinite-dimensional spaces is not guaranteed.

Assumption 4. The covariate space X is finite-dimensional and discrete.

We show that when L(z) := I(z < c), (2) has an optimal deterministic policy, and any optimal determin-

istic policy has a highly-structured form; it satisfies a property called α-validity for some α > 0.

Definition 5. For any α ≥ 0 and covariate x ∈ X , the set of α-valid transfers at x is

Tα(x) := {t ∈ R | t = 0, t = c, t such that t < c and fY |X=x(c− t) = α}. (10)

Using the definition of α-valid transfers, we can now define an α-valid transfer policy.

Definition 6. A transfer policy t(·) is α-valid if t(x) ∈ Tα(x) for every x ∈ X . Note that t(x) may make a

potentially randomized choice from the set.

Theorem 6. Suppose that Assumption 4 holds and FY |X=x has positive density on [0, c] for all x ∈ X . If

L(z) := I(z < c), there exists an optimal deterministic policy that solves (2) and any optimal deterministic

policy must be α-valid.

Note that due to the non-convexity of the feasible set, the optimal deterministic policy is not necessarily

unique.

To find an optimal deterministic policy, we can recast poverty rate minimization as a two-level optimizia-

tion problem, where the outer optimization sweeps over all possible α values and the inner optimization finds

an optimal deterministic α-valid policy among the class of deterministic α-valid policies.
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Corollary 7. Suppose that Assumption 4 holds. If L(z) := I(z < c), (2) can be re-written as

min
α≥0

min
t:X→R

{PF [t(X) + Y < c] : EF [t(X)] ≤ B and t is α-valid}. (11)

Note that the inner optimization problem is always feasible because t(x) = 0 satisfies the budget constraint

and is α-valid. The inner optimization problem of (11) finds an optimal deterministic α-valid policy among

the class of deterministic α-valid policies. We demonstrate that this is equivalent to solving a multiple-choice

knapsack problem.

For technical convenience, we assume that for any covariate x ∈ X , the set of α-valid transfers Tα(x)
contains at most K points for some K <∞.

Assumption 5. There exists K <∞ such that supx∈X ,α∈A |Tα(x)| ≤ K.

This assumption requires the conditional distributions fY |X to have a finite number of modes.

Let A be the space of plausible α values. We note that A is bounded because α ≥ 0 and α ≤
supx∈X ,y∈Y fY |X=x(y). Define z : X × A → RK , where zk(x;α) is the k-th smallest element of Tα(x) and

zk(x;α) = c for |Tα(x)| < k ≤ K. Let p : X × A → RK , where pk(x;α) = PF [zk(X;α) + Y < c | X = x] .

Note that z is a vector that captures the α-valid transfer amounts, and p is a vector that captures the

conditional post-transfer poverty rates at these amounts.

Corollary 8. Fix α > 0. Let π : X → [0, 1]K . Under Assumption 5, the solution to the inner optimization

problem in (11) is given by

t(x) = ⟨π(x), z(x;α)⟩

where π is the solution to a multiple-choice knapsack problem:

minimize EF [⟨π(X), p(X;α)⟩]

subject to EF [⟨π(X), z(X;α)⟩] ≤ B

⟨π(x),1⟩ = 1 ∀x ∈ X

πk(x) ∈ {0, 1} ∀x ∈ X , k ∈ [K].

(12)

The program in (12) is a multiple-choice knapsack problem. In the multiple-choice knapsack problem,

the goal is to fill a knapsack up to a capacity B by selecting exactly one item out of each class of items,

where each item has an associated “loss” and “weight.” In our problem, each class corresponds to a unit

with covariates x and the items in the class are the α-valid transfers Tα(x). For clarity of exposition, if Tα(x)
contains less than K elements, we pad the class of items with transfers c in the formulation in (12) until each

class consists of K transfers. For item k in the class corresponding to covariates x, the loss is given by the

conditional post-transfer poverty rate pk(x;α) and the weight is given by the the transfer amount zk(x;α).

Whereas the standard multiple-choice knapsack problem is NP-hard, its fractional relaxation can be solved

using a computationally efficient algorithm. We leverage this connection to develop a practical algorithm

for solving (12). In the fractional formulation, we permit the selection of fractional amounts of items, which

permits fractional values πk(x) ∈ [0, 1]. We emphasize that in the absence of additional assumptions, solving

the fractional relaxation of (12) yields a stochastic policy that is guaranteed to obtain a poverty rate less

than or equal to the optimal deterministic α-valid policy. We provide conditions under which solution to the

fractional relaxation is equal to the solution to the original problem (12) in Appendix A.2.1.
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Thus, our overall algorithm for solving (2) where the objective corresponds to the poverty rate relies

on the representation provided in (11). We define a grid [α1, α2, . . . , αJ ] over A and solve the fractional

knapsack problem for every αj in the grid to obtain a policy tαj (·). Finally, we return the policy t∗rate that

yields the lowest poverty rate over all tα for α in the grid.

A.2.1 Algorithm

We provide an algorithm for poverty rate minimization, which leverages a computationally efficient algorithm

for solving the fractional multiple-choice knapsack problem.

Input : Conditional distributions {fY |X=x(·)}x∈X ,
Covariate distribution fX(·),
Budget B,
Threshold c,
Grid size m

Output: Transfer policy t∗

1 costs ← ∅
2 policies ← ∅
3 Define αmax using {fY |X=x(·)}x∈X .

4 for α ∈ [αmax+δ
m , 2αmax

m , . . . (m−1)·αmax

m , αmax] do
5 for x ∈ X do
6 Tα(x)← ComputeAlphaValidTransfers(fY |X=x(·), α, c)
7 Cα(x), ρ(x;α)← ComputeLowerConvexHull(fY |X=x(·), Tα(x))
8 end
9 Apply Algorithm 2

10 tα, cost ← SolveFractionalMCKnapsack(fX(·), {(Cα(x), ρ(x;α))}x∈X , B)
11 costs.append(cost)
12 policies.append(tα)

13 end
14 t∗ ← Minimum cost policy in policies (based on costs)
15 return t∗

Algorithm 1: Two-level optimization procedure for poverty rate minimization.

The outer loop of our algorithm is a grid search over plausible α values. Let C := supx∈X ,y∈Y fY |X=x(y).

We note that for any α > C the set Tα(x) will only consist of {0, c} for all x, meaning that the inner

optimization problem is identical for these values of α. As a result, it is sufficient to define αmax = C + δ for

some small δ > 0 and restrict α to [0, αmax]. In Algorithm 1, we grid this interval into m values.

The inner loop of our algorithm finds the optimal α-valid policy among the set of stochastic α-valid

policies by solving a fractional multiple-choice knapsack problem. When X has continuous support, the

solution to the fractional relaxation is almost surely integer-valued, meaning that we recover the optimal

deterministic α-valid policy, which solves (12). When X does not have continuous support, the solution may

be stochastic. Nevertheless, the solution is guaranteed to have equal or lower policy cost than the optimal

deterministic α-valid policy.

We solve the fractional multiple-choice knapsack problem using the computationally-efficient algorithm

of Zemel (1980). This procedure is also used by Sverdrup et al. (2023) to solve a cost-constrained treatment

allocation problem. The algorithm relies on the key observation that in the optimal solution to the fractional

relaxation of (12), the only transfer amounts that are active are the ones that lie on the lower convex hull

of the loss-weight plane. For any x ∈ X , define the lower convex hull of (zk(x;α), pk(x;α)) for k = 1, . . .K
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to be a set Cα(x) of points with the ordering k1(x), . . . k|Cα(x)|(x) such that

zk1(x)(x;α) < zk2(x)(x;α) < · · · < zk|Cα(x)|(x)(x;α),

pk1(x)(x;α) > pk2(x)(x;α) > · · · > pk|Cα(x)|(x)(x;α),

ρk1(x)(x;α) < ρk2(x)(x;α) < · · · < ρk|Cα(x)|(x;α) < 0,

where ρ is the incremental cost-loss ratio for points on this convex hull as

ρkj(x)(x;α) :=
pkj+1(x)(x;α)− pkj(x)(x;α)

zkj+1(x)(x;α)− zkj(x)(x;α)
kj+1(x), kj(x) ∈ Cα(x) (13)

and let ρk(x) :=∞ if k /∈ {k1(x), . . . k|Cα(x)|(x)}.
We define a thresholding rule on the incremental cost-loss ratio (13).

Definition 7 (Thresholding rule, (Sverdrup et al., 2023)). Given cost-loss ratios ρ as in (13), a threshold

λ ≤ 0, and an interpolation value η ∈ [0, 1), we define a thresholding rule as

Tkj(x)(x; ρ, λ, η) =



1 if ρkj(x)(x) < λ < ρkj+1(x)(x)

η if ρkj(x)(x) = λ

1− η if ρkj+1(x)(x) = λ

0 o.w.

.

Following from Theorem 1 of (Sverdrup et al., 2023), we have that under Assumption 5, there exists an

optimal (stochastic) policy tα(x) := ⟨z(x;α), π(x)⟩, where π(x) is a thresholding rule defined in Definition

7, i.e. there exists constants λα ≥ 0, ηα ∈ [0, 1), such that

π(x) = T (x; ρ(·;α), λα, ηα).

If X has continuous support, then PF [ρk(x) = λ] = 0 for all λ > 0, so π(x) is almost surely integer-valued

(deterministic).

The fractional multiple-choice knapsack algorithm can be used to obtain the optimal (stochastic) policy.

For a detailed description of the algorithm, we refer readers to Algorithm 2. At the start of the procedure,

all units are assigned the transfer amount 0, which corresponds to the first point k1(x) on their convex hulls.

Then, we initialize a priority queue. For each x ∈ X , we add the pair of x and the second point k2(x) on its

convex hull C(x) to the queue with priority ρk1
(x). While the post-transfer poverty rate constraint has slack

and the queue is nonempty, we pop points from the queue. When a unit with covariates x and point kj(x)

on its convex hull is popped from the queue, the unit is assigned the corresponding transfer value zkj(x)(x).

If the unit has additional points on its convex hull, then the next point on its convex hull is added to the

queue with priority equal to its cost-weight ratio ρkj+1(x). The sequence of updates is dictated by the priority

queue ordered by ρ. When solving the problem in the population case, the time-complexity of the algorithm

is log-linear in |X | ·K. While this time-complexity may seem prohibitively large when the covariate space is

continuous, in practice, this algorithm is only applied to units in the test set, so the time-complexity is at

most ntest ·K.
The time complexity of this algorithm is |X | · K log |X | · K. The worst-case run time arises when

B > EF

[
zk|Cα(X)|(X)

]
, so all points on the convex hull for all units will be added and removed from the
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priority queue. Since there are at most |X | · K points added and removed this yields a complexity of

|X | ·K log |X | ·K.

Input : Convex hulls and incremental cost-loss ratios {(C(x), ρ(x))}x∈X ,
Covariate distribution fX(·),
Budget B

Output: Transfer policy t, Poverty rate loss

1 Initialize priority queue.
2 cost ← 0, loss ← 0
3 queue ← ∅
4 for x ∈ X do
5 Assign unit to first point on convex hull.
6 k1(x)← First point on convex hull C(x)
7 cost += fX(x) · zk1(x)(x), loss += fX(x) · pk1(x)(x)
8 Enqueue next point on hull.
9 k2(x)← Second point on convex hull C(x)

10 queue.add((x, k2(x)) with priority ρk1
(x)))

11 end
12 while cost < B and queue.size() > 0 do
13 (x, kj(x))← queue.pop()
14 Subtract current transfer to unit x from cost and loss.
15 cost-= fX(x) · zkj−1(x)(x), loss-= fX(x) · pkj−1(x)(x)

16 Allocate transfer kj(x) to unit x, record new cost and loss.
17 t(x)← zkj(x)(x)

18 cost += fX(x) · zkj(x)(x), loss += fX(x) · pkj(x)(x)

19 if cost > ϵ then
20 Perform fractional adjustment for unit x– updating t, cost, loss.
21 break

22 end
23 if there remain points on convex hull for unit x then
24 kj+1(x)← Next point on C(x)
25 queue.add((x, kj+1(x)) with priority kj(x))

26 end

27 end
28 return t, loss

Algorithm 2: Solve fractional multi-choice knapsack.

A.2.2 Finite-Data Regime

Thus far, we have given a characterization of the optimal deterministic policy that minimizes the poverty

rate and a practical algorithm for poverty rate minimization. However, in realistic settings, we only have

access to data sampled from F . In this section, we assume the true data distribution F is unknown but

we have access to a training set Dtrain = {(Xi, Yi)}ntrain
i=1 where (Xi, Yi) ∼ F i.i.d., and we aim to optimize

allocations for unlabeled samples Dtest = {Xi}ntest
i=1 where Xi ∼ F i.i.d.

Algorithm 1 relies on the conditional density function fY |X to compute the optimal transfer policy. In

finite samples, we consider the plug-in estimator for the optimal transfer policy, which is obtained by running

Algorithm 1 with an estimator of the conditional density f̂Y |X and the empirical covariate distribution

f̂X(x) = 1
ntest

· I(Xi ∈ Dtest) instead of the true conditional and covariate distributions.

To estimate f̂Y |X , we apply an extension of Lindsey’s method (Efron and Tibshirani, 1996) to the training
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data Dtrain. Lindsey’s method is a popular technique for marginal density estimation, and our approach is

a straightforward extension of this method for conditional density estimation. To model the conditional

densities, we consider the following exponential family of densities on Y

h(y | x) = h0(y) · exp(s(y)TΘx− ψ(Θx)). (14)

Here, h0(y) represents a carrier density, s(y) is a J-dimensional vector of sufficient statistics, Θ is a J × d
matrix of parameters, and ψ is the log partition function, the normalizing function that ensures h(y | x)
integrates to 1 over Y. Many choices of carrier density and sufficient statistics are possible. Following

Lindsey’s method, we set the carrier density to be a nonparametric estimate of fY , the marginal distribution

of Y . In addition, we consider a basis of B-Spline functions to form the sufficient statistics.

We compute the conditional density estimator as follows.

1. We estimate fY , the marginal density of Y , by computing a kernel density estimate using {Yi}ntrain
i=1 .

We denote this estimate as f̂Y .

2. Setting f̂Y as the carrier density in (14), we estimate Θ via maximum likelihood. To estimate the

log-likelihood of (14), we first approximate the log-partition function by discretizing Y into M bins

with midpoints [y1, . . . yM ] and corresponding widths [∆1,∆2, . . .∆M ]. We note that the log partition

function can be approximated by

ψ(z) = log(

∫
f̂Y (y) · exp(s(y)T z)) ≈ log(

M∑
j=1

f̂Y (yj) · exp(s(yj)T z) ·∆j).

Thus, the log-likelihood of (14) can be written as

log h(yi | xi; Θ) = s(yi)
TΘxi −

M∑
j=1

f̂Y (yj) · exp(s(yj)TΘxi) ·∆j + c, (15)

where c is a constant factor that does not depend on Θ. Notably, the log-likelihood is concave in Θ,

so standard optimization tools can be applied to obtain an estimate of Θ. In our work, we optimize Θ

via stochastic gradient descent.

Like Lindsey’s method, this is a hybrid approach between a parametric and nonparametric method because it

models the relationship between high-dimensional covariates and the density value with a generalized linear

model but allows the density function to take on a flexible form by fitting the carrier density nonparametri-

cally.

A.3 Binary Policies

In this section, we solve (2) with the additional constraint that the policy must be binary-valued. In contrast

to proxy means testing as in Definition 1, we minimize a particular poverty measure and optimize not only

who receives the transfer but also the optimal transfer size.

Learning the optimal binary transfer policy that minimizes a particular loss function L among all possible
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binary transfer policy can be framed as the following optimization problem

minimize EF [L(t(X) + Y ))]

subject to EF [t(X)] ≤ B

t(x) ∈ {0, t̄} ∀x ∈ X

t̄ ∈ [0, c].

(16)

However, the above optimization problem is non-convex because it involves jointly optimizing over the

maximum transfer value t̄ and the transfer policy t.

We can rewrite (16) as follows

min
t̄∈[0,c]

{
min

π:X→{0,1}
EF [L(t̄+ Y ) · π(X) + L(Y ) · (1− π(X))] subject to EF [π(X)] ≤ B/t̄

}
. (17)

Solving the inner minimization of (17) allows us to compute the optimal binary transfer policy among

binary transfer policies where the maximum transfer value is a fixed value t̄. The inner minimization of (17) is

convex and can be viewed as a capacity-constrained classification problem. Let πt̄(·;B) be the solution to the

inner minimization of (17). The corresponding binary transfer policy can be defined as tt̄(·;B) := t̄ ·πt̄(x;B).

The function πt̄(·;B) identifies the units who will benefit most (in terms of conditional loss reduction)

from the t̄-valued transfer. We can define the conditional loss reduction function for a t̄-valued transfer

ρt̄(x) := EF [L(t̄+ Y )− L(Y ) | X = x] . (18)

For poverty measures, L is decreasing so ρt̄(x) ≤ 0 for any t̄ ∈ R+.

Following from Theorem 1 from Sun et al. (2021), there are constants ρ∗t̄,B ∈ R, aT,B ∈ [0, 1], such that

the optimal solution to the inner minimization of (17) has the form

πt̄(x;B) =


1 ρt̄(x) < ρ∗t̄,B

at̄,B ρt̄(x) = ρ∗t̄,B

0 ρt̄(x) > ρ∗t̄,B ,

(19)

where either ρ∗t̄,B = at̄,B = 0 (i.e., we have sufficient budget to treat all units) or ρ∗t̄,B < 0 and the pair

(ρ∗t̄,B , at̄,B) is the unique pair for which the policy cost isB. IfXi has continuous density, PF

[
ρT (X) = ρ∗T,B

]
=

0 and the policy πt̄(·;B) is both deterministic and the unique optimal solution.

We operationalize this result to provide an algorithm for optimal binary policies. Our overall algorithm

first discretizes the interval [0, c] into a grid of possible maximum transfer amounts [t̄1, t̄2, . . . t̄J ]. For each

j = 1, 2, . . . J , we compute πt̄j (·;B) by ranking units by ρt̄j (·) in increasing order and allocating transfers t̄j

sequentially until the budget B is exhausted. We set the optimal binary policy t∗binary under loss function L

to be the policy that yields the lowest expected loss over the grid, i.e.

t∗binary(x;B) = t̄j∗ · πt̄j∗ (x;B), where j∗ = argmin
j∈[J]

EF

[
L(tt̄j (Xi;B) + Yi)

]
.

We note that this procedure will yield the optimal binary-valued policy under any decreasing poverty measure

L and does not require the loss function L to be convex. As a result, we will use this approach to learn

optimal binary-valued policies under both the poverty rate and the poverty gap index.
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A.3.1 Finite-Data Regime

Again, we consider the setting where we only have access to data sampled from F . In this section, we assume

the true data distribution F is unknown but we have access to a training set Dtrain = {(Xi, Yi)}ntrain
i=1 where

(Xi, Yi) ∼ F i.i.d., and we aim to optimize allocations for unlabeled samples Dtest = {Xi}ntest
i=1 where Xi ∼ F

i.i.d. We use the following procedure to estimate the optimal binary policy for a budget B.

First, we discretize the interval [0, c] into a grid of possible maximum transfer amounts t̄1, t̄2, . . . t̄J . Second,

we estimate nuisance parameters ρt̄j (·) for j = 1, 2, . . . J . Using the training set Dtrain = {(Xi, Yi)}ntrain
i=1 , we

define pseudo-labels

Zi = L(t̄+ Yi)− L(Yi)

for i = 1, 2, . . . , ntrain. Estimate ρ̂t̄j (·) via deep learning using Dtrain and pseudolabels. Observe that

ρt̄ ∈ argmin
ρ

EF

[
(Zi − ρ(Xi))

2
]
.

Our implementation represents ρt̄ with a neural network and solves the following empirical risk minimization

problem

ρ̂t̄j (·) ∈ argmin
ρ

ÊF

[
(Zi − ρ(Xi))

2
]
.

Now, we must learn the optimal transfer size t̄j . For each j = 1, 2, . . . J , create a ranked list of units by sorting

ρ̂t̄j (Xi) in increasing order for Xi in the training set. We can estimate the threshold ρ∗t̄j ,B by allocating

transfers to the B/t̄j-fraction of units at the top of the ranked list for each j = 1, 2, . . . J . After that, we can

form t̂t̄j (·;B) using the estimated conditional loss reduction function ρ̂t̄j (·) and estimated threshold ρ̂∗t̄j ,B .

Then, we can select

ĵ∗ ∈ argmin
j∈[J]

ÊF

[
L(t̂t̄j (Xi;B) + Yi)

]
.

We assign transfers to units in the test set Dtest by ranking units in the test set by ρ̂j∗ in increasing order

and allocating t̄ĵ∗ -valued transfers to units starting at the top of the ranked list until we hit the budget

constraint B, which ensures that the budget constraint is exactly satisfied on the test set.

A.4 Weakly Equitable Oracle Policy

We highlight the behavior of the weakly equitable oracle policy. Suppose that Assumption 1 holds, Xi = Yi

(i.e. perfect information), and FY has continuous support on a compact set Y ⊂ R+. Let t(x;B) be a policy

family that satisfies EF [t(Yi;B)] ≤ B for all B ∈ R+. If t is weakly equitable with respect to F then

t(y;B) = (λ(B)− y)+,

where λ(B) is monotone increasing in B and EF [(λ(B)− Yi)+] ≤ B. The requirement that t is weakly

equitable ensures that the incremental transfer is allocated to the worst-off group. In other words, the

budget is first spent on allocating a transfer to the poorest unit in terms of pre-transfer consumption to

raise them to the pre-transfer consumption of the second-poorest. After equalizing the consumption of the

poorest and second-poorest, the remaining budget is spent on transfers to the poorest and second-poorest

units in terms of pre-transfer consumption to raise them to the level of the third-poorest, and so on.

We realize that if t allocates transfers based on perfect information on consumption and is weakly equitable

in the sense of Definition 4, then t can only obtain a reduction in the post-transfer poverty rate by lifting all
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units with Yi < c above the poverty line. This is because the weakly equitable oracle policy first equalizes

consumption among units who lie below the poverty line, so a reduction in the poverty rate will not be

observed until we have enough budget to close the poverty gap, i.e. B ≥ EF [(c− Yi)+].

B Proofs

B.1 Additional Lemmas

We define new notation for the following lemmas. Define

Gx(t) = −EF [L(Y + t) | X = x]

G′
x(t) = −

d

dt
EF [L(Y + t) | X = x] .

(20)

Lemma 9. Suppose Assumption 1, 2 hold. Let L be decreasing, strictly convex, differentiable, bounded below

by C > −∞. Then, Gx(t) is differentiable on R+, strictly concave, and twice differentiable on R+.

Lemma 10. Suppose Assumption 1, 2 hold. Let L denotes a FGT index with α ≥ 1. Then, Gx(t) is

differentiable on R+, strictly concave on [0, c], and twice differentiable on [0, c]

B.2 Proof of Theorem 1

We consider two cases. We first focus on the case where L is nonconvex in a region where it is continuously

differentiable. Then, we will consider the case that L is nonconvex in a region where it is not continuously

differentiable.

We define the Gamma kernel function, which will be used in our proof.

dKh(y;m) =
ym/h · e−y/h

hm/(h+1) · Γ(m/(h+ 1))
. (21)

We note that this kernel function has positive support on [0,∞). The mode of this distribution is at m for

all h ≥ 0. In addition, as h→ 0, dKh(y;m) converges weakly to δm, a point mass at m. We also note that

if m1 < m2, then Kh(·;m1) ⪯SD Kh(·;m2).

B.2.1 Continuously Differentiable Case

In the case where L is nonconvex in a region where it is continuously differentiable, we show that it is possible

to construct a population distribution F0 with the following properties

1. F0 is a mixture distribution over two types, i.e. FX = 1
2 · I(X = x1) +

1
2 · I(X = x2).

2. The conditional distribution F0,Y |X=xi
is a point mass, i.e. F0,Y |X=xi

= I(y = yi). In addition,

y1 < y2, so FY |X=x1
⪯SD FY |X=x2

.

3. F0 has a strict unique optimal transfer policy under F0 and budget B > 0 called t∗0(·;B). The optimal

transfer policy t∗0(·, B) is not weakly equitable under F0. In particular, t∗0(x1;B)− t∗0(x2;B) < 0.

The construction is provided at the end of this subsection.
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We will use F0 to construct a population distribution that satisfies Assumption 2 under which the optimal

policy that solves (2) is not weakly equitable. Given that F0 has conditional distribution F0,Y |X=xi
= I(y =

yi), we define Fh be a distribution over (X,Y ) where Fh,X = F0,X and Fh,Y |X = Kh(y; yi), where we recall

that Kh is the Gamma kernel defined in (21).

We consider solving (2) under population distribution Fh, i.e.

min
t:X→R+

{EFh
[L(t(X) + Y )] : EFh

[t(X)] ≤ B, t(x) ≥ 0 ∀x ∈ X}. (22)

We note that for any h > 0, Fh satisfies Assumption 2, so it remains to show that there exists some h > 0

under which the solution to (22) is not weakly equitable.

We show that in a neighborhood of h = 0, the above optimization problem has a unique solution t∗h
that is continuous in h. To see this, we first establish that EFh

[L(t+ Y ) | X = xi] is continuous in h in a

neighborhood about h = 0 for all t ∈ [0, 2B]. This holds because we must have that∫ ∞

0

L(t+ y)dFh(y; yi)→
∫ ∞

0

L(t+ y)δyi
dy = L(t+ yi)

as h → 0 for any t ∈ R+ because L is continuous, bounded. Since EFh
[L(t+ Y ) | X = xi] is continuous in

h in a neighborhood about h = 0 and (22) has a unique solution when h = 0, then (22) must have a unique

solution in a neighborhood about h = 0, and this solution must also be continuous in h. As a result, the

following function is well-defined and continuous in h on this neighborhood:

g(h) := t∗h(x1;B)− t∗h(x2;B). (23)

This function measures the amount of inequity of the optimal policy that solves (22). If g(h) is negative,

then the optimal policy is not be weakly equitable. We note that g(0) < 0 by construction of F0. If for all

h in the neighborhood, we have that g(h) < 0, then we certainly have that our desired claim holds: there

exists some h > 0 such that the optimal policy under Fh is not weakly equitable. On the other hand, if there

exists some h > 0 in the neighborhood such that g(h) ≥ 0, then, by continuity, there must exist some h′ in

the neighborhood so that g(0) ≤ g(h′) < 0 by the Intermediate Value Theorem. Thus, there is some h′ > 0

so that the solution to (22) yields an optimal policy that is not weakly equitable.

Construction of F0 Since L is non-convex on a continuously differentiable region, there exists some open

interval I ⊂ R where L′ is strictly decreasing. Pick y1 ∈ I. Since L′ is continuous on this interval, for any

ϵ > 0, there exists δ1(ϵ) > 0, so that |L′(y1)−L′(z)| < ϵ for |y1−z| < δ1(ϵ).We choose ϵ1 sufficiently small so

that the corresponding Bδ1(ϵ1)(y1) ⊂ I. Next, we pick y2 ∈ I such that L′(y2) < L′(y1)−ϵ1, which is possible

because L′ is strictly decreasing on I. Again, by the continuity of L′, for any ϵ, there exists δ2(ϵ) > 0, so that

|L′(y2)−L′(z)| < ϵ for |y2− z| < δ2(ϵ). We can choose ϵ2 sufficiently small so that L′(y2) + ϵ2 < L′(y1)− ϵ1.
Let ϵ = mini∈{1,2} ϵi. It is straightforward to see that

L′(y2) + ϵ < L′(y1)− ϵ. (24)

Let ∆ = min(δ1(ϵ), δ2(ϵ)). For zi ∈ Bδ(yi), we have that

L′(z2) < L′(y2) + ϵ < L′(y1)− ϵ < L′(z1).
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This implies that for t ∈ [0,∆], we have that

L′(y1 + t) ≥ L′(y1)− ϵ (25)

and

L′(y2 + t) ≤ L′(y2) + ϵ. (26)

Combining (25), (26) and (24), implies that for all t ∈ [0,∆]

L′(y2 + t) < L′(y1 + t).

Set F0,Y |X=xi
= I(y = yi) for i ∈ {1, 2}. For this choice of population distribution F0 and B = ∆/2, the

optimal policy that solves (2) is t∗(x) = 0 · I(X = x1)+∆ · I(X = x2). Note that this policy is non-monotone

increasing in consumption because F0,Y |X=x1
⪯SD F0,Y |X=x2

but t∗(x2) > t∗(x1) and is thus, not weakly

equitable.

This follows from the fact that L is concave on the feasible set because L′ is strictly decreasing. The

minimizer of a concave function over a closed, convex set must occur on an extremal point of the feasible

set. The two extremal points are the policy t∗ and the policy t̃(x) = ∆ · I(X = x1)+0 · I(X = x2). It suffices

to show that

EF0

[
L(t̃(X) + Y )

]
> EF0

[L(t∗(X) + Y )] .

Since we have that

L′(y1 + t1) > L′(y2 + t2)

for t1, t2 ∈ [0,∆], by the Mean Value Theorem, we must also have that

(L(y1 +∆)− L(y1)) ·∆ > (L(y2 +∆)− L(y2)) ·∆.

Multiplying both sides by 1
2 and rearranging, we have that

1

2
· (L(y1 +∆) + L(y2)) >

1

2
· (L(y1) + L(y2 +∆)).

This implies that

EF

[
L(t̃(X) + Y )

]
> EF [L(t∗(X) + Y )] .

B.2.2 Non-Continuously Differentiable Case

Now, we consider the case where L is not continuously differentiable in the region where it is non-convex. In

this case, we will be able to show that it is possible to construct a smoothed loss function L̃ that preserves the

non-convexity of L but is also continuously differentiable by using the Gamma kernel Kb(·; 0) for smoothing.

For this smoothed loss function L̃, we can construct a distribution Fh that satisfies Assumption 2 using the

above proof technique under which the optimal policy that solves (2) with population distribution Fh and

loss function L̃. Using the smoothing kernel K(·; b) and the distribution Fh, we can show that there is a

distribution F under which the optimal policy that solves (2) with the original loss function L is not weakly

equitable.
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Since L is decreasing, it is continuous almost everywhere. Since L is also nonconvex and is continuous

almost everywhere, there must exist t0, t1, t2 that are continuity points of L such that t0 = λt1 + (1 − λ)t2
for some λ ∈ (0, 1) and

L(t0)− λL(t1)− (1− λ)L(t2) = ϵ > 0.

If there exists A0, A1, A2 such that |L(t1)−A1| < ϵ
4 , |L(t2)−A2| < ϵ

4 , and |L(t0)−A0| < ϵ
4 . Then,

A0 − λA1 − (1− λ)A2 ≥
ϵ

2
. (27)

We define the following loss function.

L̃b(t) :=

∫ ∞

0

L(t+ z)dKb(z; 0),

where Kb(z; 0) is the Gamma kernel. Since L is integrable on R+, we have that L̃(t) is continuously

differentiable on R+ for any b > 0. By weak convergence, b → 0, L̃b(t) → L(t) for continuity points t of L.

This implies that there exists b sufficiently small so that |L̃b(t1)−L(t1)| < ϵ
4 , |L̃b(t2)−L(t2)| < ϵ

4 , and lastly

|L̃b(t0)− L(t0)| < ϵ
4 . This implies that L̃b is non-convex by (27), i.e.

L̃b(λt1 + (1− λ)t2)− λL̃b(t1)− (1− λ)L̃b(t2) ≥
ϵ

2
.

Thus, L̃b is nonconvex in a region where it is continuously differentiable.

Since L̃b is nonconvex in a region where it is continuously differentiable, we can apply the proof in

Section B.2.1 to show that there is a distribution Fh under which the optimal policy under L̃ is not weakly

equitable. This distribution Fh has covariate distribution Fh,X(x) =
∑

i∈{1,2}
1
2 I(x = xi) and Fh,Y |X=xi

=

Kh(·; yi). Define a population distribution F over (X,Y ) where FX =
∑

i∈{1,2}
1
2 I(x = xi) and FY |X=xi

is

the distribution over Z1+Z2,i, where Z1 ∼ Kb(·; 0) and Z2,i ∼ Kh(·; yi). We note that FY |X=x1
⪯SD FY |X=x2

in this case. We observe that

EF [L(t+ Y ) | X = xi] = E [L(t+ Z1 + Z2,i) | X = xi]

=

∫ ∞

0

∫ ∞

0

L(t+ z1 + z2,i)dKb(z1; 0) · dFh,Y |X(z2,i)

=

∫ ∞

0

L̃(t+ z2,i)dFh,Y |X(z2,i)

= EFh,Y |X

[
L̃(t+ Y ) | X = xi

]
.

Thus, the optimal policy t∗ that solves (2) with loss function L̃ and population distribution Fh is equal to

the optimal policy that solves (2) with loss function L and population F described above. Since t∗ is not

weakly equitable under Fh, t
∗ is also not weakly equitable under F.

B.3 Proof of Theorem 2

We show that if B > 0, then (2) has a unique solution with form given by

tλ(x) = ((G′
x)

−1(λ))+, (28)
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where λ ≥ 0 is the unique choice that satisfies EF [tλ(X)] = B.

We can dualize the budget constraint of (2) as follows. Let

L(t, λ) = EF [L(Y + t(X))] + λ(EF [t(X)]−B) = −EF [GX(t(X))] + λ(EF [t(X)]−B). (29)

Define the dual function as

h(λ) = min
t:X→R+

{L(t, λ) : t(x) ≥ 0 ∀x ∈ X}. (30)

Then the dual problem is given by

max
λ≥0

h(λ). (31)

To compute h(λ), we solve the optimization problem on the right side of (30)

min
t:X→R+

{−EF [GX(t(X))] + λ(EF [t(X)]−B) : t(x) ≥ 0 ∀x ∈ X}. (32)

Importantly, the constraints of the above program are separable, so the policy that solves (32) satisfies the

KKT conditions for each x ∈ X . Suppose that the first set of conditions on L hold, i.e. L is decreasing,

strictly convex, differentiable, bounded below by a constant C > −∞. In this case, we can apply Lemma 9 to

see that Gx(t) is differentiable and is strictly concave for every x ∈ X . This implies that the optimal solution

to this program is unique. To characterize the optimal solution, we note that G′
x is strictly decreasing so is

invertible.

Suppose that the second set of conditions on L hold, i.e. L is an FGT index with α ≥ 1. In this case,

we can apply Lemma 10 to see that Gx(t) is differentiable on (0,∞) and strictly concave on (0, c) for every

x ∈ X . Since L is an FGT index, the solution to (32) is equivalent to the solution to

min
t:X→R+

{−EF [GX(t(X))] + λ(EF [t(X)]−B) : 0 ≤ t(x) < c ∀x ∈ X} (33)

because L(z) = 0 for z ≥ c. We observe that Gx(t) is differentiable and is strictly concave on this region for

every x ∈ X . As a result, the optimal solution to the program is unique. We also note that G′
x is strictly

decreasing on [0, c] so is invertible on this region.

In both cases, the unique solution will satisfy the first-order stationarity condition of this program or lie

on the boundary, i.e. tλ(x) = 0. The first-order stationarity condition is

G′
x(t(x)) = λ. (34)

The optimal solution to this program has form (28).

We note that h(λ) is then given by

h(λ) = −EF [GX(tλ(X))] + λ(EF [tλ(X)]−B). (35)

Furthermore, we argue that a unique choice of λ determines the solution to the program. To see this,
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note that the derivative of h is

dh

dλ
=− EF

[
G′

X(tλ(X)) · d
dλ
tλ(X)

]
+ λEF

[
d

dλ
tλ(X)

]
+ (EF [tλ(X)]−B)

= −EF

[
G′

X((G′
X)−1(λ)) ·

( 1

G′′
X((G′

X)−1(λ))
· I(λ < G′

X(0))
)]

+ λ · EF

[
1

G′′
X((G′

X)−1(λ))
· I(λ < G′

X(0))

]
+ (EF [tλ(X)]−B)

= EF [tλ(X)]−B.

(36)

The second derivative of the dual objective is given by

d2h

dλ2
= EF

[
1

G′′
X(tλ(X))

· I(λ < G′
X(0))

]
.

Under the first set of conditions on L, i.e. that L is decreasing, strictly convex, differentiable, and bounded

below by a constant C > −∞, we can again apply Lemma 9 to see that Gx is twice-differentiable and strictly

concave, so G′′
x(tλ(x)) > 0. This implies that h is strictly concave on

Λ = {λ ≥ 0 | ∃x ∈ X such that λ < G′
x(0)}. (37)

We can show that if B > 0, then any optimal λ∗ that solves (31) must lie in Λ, where Λ is defined in (37).

Suppose for the sake of contradiction that λ∗ /∈ Λ. Since λ∗ is an optimal solution to the dual then it must

satisfy the first-order stationarity condition, so we must have that EF [tλ∗(X)] = B. We note that if λ∗ /∈ Λ,

then λ∗ > G′
x(0) for all x ∈ X . This implies that tλ∗(x) = 0. However, this contradicts the first-order

stationarity condition. Thus, if B > 0, the optimal λ∗ lies in Λ. We note that h is continuous and Λ is

compact, so h has at least one maximizer on Λ. In addition, h is strictly concave on Λ and Λ is convex, so

h must have at most one maximizer on Λ. Thus, if B > 0, then (31) has a unique solution λ∗ that lies in Λ

and the optimal policy that solves (2) is unique and given by (28) with this choice of λ∗.

Similarly, under the second set of conditions on L, we can apply Lemma 10 to see that Gx is twice-

differentiable on [0, c] and strictly concave on [0, c]. When L is an FGT index for α ≥ 1, we must have that

tλ(x) ∈ [0, c], so G′′
x(tλ(x)) > 0. As above, we can similarly show that for B > 0, the optimal λ∗ that solves

(31) must lie in Λ and h is strictly concave on Λ, so λ∗ must be unique.

Now, we verify the two properties of weak equity.

B.3.1 Transfer is monotone increasing in budget.

We can characterize how the optimal solution λ(B) that determines the optimal solution (28) varies with B.

By Lemma 9, Gx is strictly concave, so G′
x must be a decreasing function. This implies that (G′

x)
−1 is also

a decreasing function. So, tλ(x) as defined in (28) is decreasing in λ. This means that as B increases, the

choice of λ(B) for which EF [tλ(X)] = B decreases. Thus, tλ(B)(x) is monotone increasing in B.

B.3.2 Incremental transfer is monotone decreasing in post-transfer consumption.

First, we show that the simpler property in (7) holds. Second, we show that the optimal policy that is

obtained by solving (2) with budget B is the same as the cumulative optimal policy that is obtained by

summing the optimal policy t(x;B′) that solves (2) with a small budget B′ and the policy ∆t(x;B − B′)
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that solves (2) with the remaining budget B −B′ after administering the transfers t(x;B′). In other words,

t(x;B) = t(x;B′) + ∆t(x;B −B′).

The first result implies that

FY+t(X;B′)|X=x ⪯SD FY+t(X;B′)|X=x′ =⇒ ∆t(x;B −B′) ≥ ∆t(x′;B −B′).

The second result implies that

∆t(x;B −B′) = t(x;B)− t(x;B′)

for all x ∈ X . Taken together, these two results imply that (6).

Transfer is monotone decreasing in consumption. We show that tλ(x) ≥ tλ(x′) for any λ ≥ 0. Since

the optimal policy has the form in (28) for some choice of λ, then the optimal policy must be monotone

decreasing in Y | X = x.

We note that L′ exists and is monotone increasing because L is decreasing and convex. As a result,

if Y | X = x ⪯SD Y | X = x′, then EF [L′(Y + t) | X = x] ≤ EF [L′(Y + t) | X = x′]. This implies

that G′
x(t) ≥ G′

x′(t) for any t ∈ R+. Since G
′
x is decreasing in t, then (G′

x)
−1 is also decreasing. Since

G′
x(t) ≥ G′

x′(t) for all t and both are decreasing in t, then we also have that (G′
x)

−1(λ) ≥ (G′
x′)−1(λ). Thus,

we have that tλ(x) ≥ tλ(x′). Thus, the optimal solution to (2) is monotone decreasing in consumption.

Cumulative policy is equal to sum of incremental policies. It is straightforward to see that the

optimal policy under the former is given by tλ(B), where tλ is given by (28) with λ(B) being the unique

choice of λ that satisfies EF

[
((G′

X)−1(λ))+
]
= B.

The optimal policy under budget B′ is similarly given by tλ(B′), where λ(B) being the unique choice of

λ that satisfies EF

[
((G′

X)−1(λ))+
]
= B′. We now consider solving

min
t:X→R+

{EF

[
L(t(X) + tλ(B′)(X) + Y )

]
: EF [t(X)] ≤ B −B′, t(x) ≥ 0 ∀x ∈ X}. (38)

Let

G̃x(t) = Gx(t+ tλ(B′)(x)),

G̃′
x(t) = G′

x(t+ tλ(B′)(x))

t̃λ(x) = ((G̃′
x)

−1(λ))+.

The optimal policy that solves (38) is given by

t̃λ(x) = ((G̃′
x)

−1(λ))+

for some unique choice of λ that satisfies EF

[
t̃λ(X)

]
= B −B′. We observe that

t̃λ(x) = ((G′
x)

−1(λ)− tλ(B′)(x))+. (39)

We show that λ that satisfies EF

[
t̃λ(X)

]
= B − B′ must be equal to λ(B). We note B > B′, so

(G′
x)

−1(λ(B′)) < (G′
x)

−1(λ(B)). We consider three cases
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1. (G′
x)

−1(λ(B)) > (G′
x)

−1(λ(B′)) > 0. In this case,

tλ(B′)(x) + t̃λ(B)(x) = tλ(B′)(x) + (G′
x)

−1(λ(B))− tλ(B′)(x))

= (G′
x)

−1(λ(B))+.

2. (G′
x)

−1(λ(B)) > 0 > (G′
x)

−1(λ(B′)). In this case,

tλ(B′)(x) + t̃λ(B)(x) = 0 + (G′
x)

−1(λ(B))

= ((G′
x)

−1(λ(B)))+.

3. 0 > (G′
x)

−1(λ(B)) > (G′
x)

−1(λ(B′)). In this case,

tλ(B′)(x) + t̃λ(B)(x) = 0 + 0

= ((G′
x)

−1(λ(B)))+.

Rearranging, we have that t̃λ(B)(x) = ((G′
x)

−1(λ(B)))+ − tλ(B′)(x). To conclude, we note that

EF

[
t̃λ(B)(X)

]
= EF

[
((G′

x)
−1(λ(B)))+ − tλ(B′)(X)

]
= EF

[
tλ(B)(X)

]
− EF

[
tλ(B′)(X)

]
= B −B′.

Thus, we not only observe that the optimal policy that solves (38) is given by (39) with λ = λ(B), but we

see that tλ(B′)(x) + t̃λ(B)(x) = tλ(B)(x). So, we have shown that our desired claim holds.

B.4 Proof of Lemma 3

We note that any optimal gap-targeting policy must have the form given in Lemma 5. At the same time,

we note that the optimal policy that solves

min
t:X→R+

EF [t(X)] subject to PF [t(X) + Y < c | X = x] ≤ λ ∀x ∈ X (40)

is also given by (9). This is straightforward to see because the constraints of (40) are separable.

Thus, we can view the optimal gap targeting policy as optimizing

min
t:X→R+

max
x∈X

PF [t(X) + Y < c | X = x] subject to EF [t(X)] ≤ B.

B.5 Proof of Lemma 4

Let mx denote the location of FY |X=x. By Lemma 5, the optimal gap minimizing policy is given by tgap(x) =

(c− F−1
Y |X=x(λ))+ for some λ(B) ∈ R such that EF

[
(c− F−1

Y |X=X(λ(B)))+

]
= B.

We note that when FY |X=x has monotone increasing density on [0, c], the post-transfer poverty rate

EF

[
FY |X=X(c− t(X))

]
is convex. In this regime, the optimal rate-minimizing policy is given by trate(x; p) =

(c − f−1
Y |X=x(p))+ for some p such that EF [trate(X; p)] = B. We show that when p(B) = g(G−1(λ(B))),

EF [trate(X; p(B))] = B.
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EF

[
(c− f−1

Y |X=X(p(B)))+

]
= EF

[
(c− f−1

Y |X=X(g(G−1(λ(B)))))+

]
= EF

[
(c− f−1

Y |X=X(fY |X=X(G−1(λ(B)) +mX)))+

]
= EF

[
(c− (G−1(λ(B)) +mX))+

]
= EF

[
(c− F−1

Y |X=X(λ(B)))+

]
= B.

This derivation also shows that

trate(x;λ(B)) = (c− f−1
Y |X=x(λ(B)))+ = (c− F−1

Y |X=x(p(B))+ = tgap(x; p(B)),

so the optimal rate-minimizing policy is the optimal gap-minimizing policy.

B.6 Proof of Lemma 5

We compute the optimal policy when L(z) = (c− z)+. Since L is convex, the optimal policy solves

min
t:X→R+

{EF [L(t(X) + Y )] + λ(EF [t(X)]−B)}

for some λ ≥ 0. The first-order stationarity condition for a given x is

d

dt
EF [L(t+ Y ) | X = x] + λ = 0. (41)

We note that

d

dt
EF [L(t+ Y ) | X = x] =

d

dt
EF [(c− t− Y )I(Y < c− t)]

=
d

dt

∫ c−t

0

(c− t)fY |X=x(y)dy −
d

dt

∫ c−t

0

yfY |X=x(y)dy

=
d

dt
((c− t) · FY |X=x(c− t))− (c− t) · fY |X=x(c− t)

= −(c− t) · fY |X=x(c− t)− FY |X=x(c− t) + (c− t) · fY |X=x(c− t)

= −FY |X=x(c− t).

So, we can rewrite (41) as

FY |X=x(c− t) = λ.

We note that the policy must also be feasible, so t ≥ 0. So, the optimal policy has the form in (9).

B.7 Proof of Theorem 6

Under Assumptions 2 and 4, (2) with L(z) = I(z < c) has a continuous objective. In addition, the feasible

set can be restricted to a compact space because any optimal policy that solves (2) will satisfy 0 ≤ t(x) < c.

Thus, there exists a minimizer of (2) with L(z) = I(z < c).
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We note that any minimizer of (2) must satisfy the KKT conditions, which we derive below. We define

the Lagrangian and its derivative below.

L(t, λ, ν) = PF [t(X) + Y < c] + λ(EF [t(X)]−B)−
∑
x∈X

νxt(x)

∇L(t, λ, ν) = fX(x) · (−fY |X=x(c− t(x)) + λ)− νx = 0.

Let λ ≥ 0 and νx ≥ 0 for all x ∈ X . The KKT conditions of this optimization problem are as follows

fY |X=x(c− t(x))− λ = − νx
fX(x)

(Stationarity)

νx · t(x) = 0 (Complementary Slackness)

λ(EF [t(X)]−B) = 0 (Complementary Slackness)

t(x) ≥ 0 (Primal Feasibility)

EF [t(X)] ≤ B (Primal Feasibility).

The optimal solution must satisfy the KKT conditions for some λ ≥ 0. By complementary slackness, we

must have that this solution satisfies EF [t(X)]−B = 0 (the inequality is tight) or λ = 0.

We consider a policy that satisfies the KKT conditions for λ = 0. When λ = 0, we must have that

fY |X=x(c− t(x)) = −
νx

fX(x)
(Stationarity)

νx · t(x) = 0 (Complementary Slackness)

t(x) ≥ 0 (Primal Feasibility)

EF [t(X)] ≤ B (Primal Feasibility).

The only policy that can satisfy these conditions simultaneously must have t(x) ∈ {0, c}. This policy must

be α-valid for α = 0.

We can also characterize policies that satisfy the KKT conditions for λ > 0:

1. If t satisfies the KKT conditions and t(x) > 0, then νx = 0 to ensure complementary slackness is

satisfied. Then we must have that fY |X=x(c− t(x)) = λ. Also, we have that t(x) ≥ 0. So, t(x) ∈ Tα(x)
for λ = α.

2. If t satisfies the KKT conditions and t(x) = 0, then we must have that fX(x) · (fY |X=x(c)− λ) = νx.

So, t(x) ∈ Tα(x) for λ = α.

As a result, a policy t that satisfies the KKT conditions for a given value λ will be α-valid for some choice

of α ≥ 0.

B.8 Proof of Corollary 7

By Theorem 6, an optimal deterministic policy must be α-valid for some α ≥ 0. So, for each value α, we can

compute the policy t∗α. Then, the optimal policy can be obtained by computing argminα:α≥0 EF [t∗α(X)] .
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B.9 Proof of Corollary 8

Recall that if a policy t is deterministic and α-valid then t(x) ∈ Tα(x) for every x ∈ X , and we can write that

t(x) = ⟨π(x), z(x;α)⟩ where π(x) : X → {0, 1}K and
∑

k∈[K] πk(x) = 1. Since α-valid policies have a highly

structured form, the constraint of (11) can be written as EF [⟨π(X), p(X;α)⟩] and the feasibility constraint

that PF [t(X) + Y < c] ≤ ϵ. (11) can be written as EF [⟨π(X), z(X;α)⟩] ≤ B. This yields (12).

C Technical Proofs

C.1 Proof of Lemma 9

C.1.1 Once Differentiable

We apply Leibniz rule to show that Gx(t) is differentiable and find an explicit form for the derivative.

Leibniz Rule (Klenke, 2013): Let T be an open subset of R and let Y be a measure space. Suppose

that g : T × Y → R satisfies the following conditions.

1. g(t, y) be a Lebesgue integrable function of y for each t ∈ X .

2. For almost all y ∈ Y, the partial derivative ∂
∂tg(t, y) exists for all t ∈ T .

3. There is a Lebesgue integrable function θ : Y → R+ for |∂g∂t (t, ·)| ≤ θ(y) almost everywhere for all

t ∈ T .

Then, for all t ∈ T ,
d

dt

∫
Y
g(t, y)dy =

∫
Y

∂

∂t
g(t, y)dy.

Let T = (0,∞). Recall that FY |X=x has positive density on Y. We can set g(t, y) := L(y+ t) ·fY |X=x(y).

Let δ ≤ inf T . We observe that |L(y + t)| ≤ max(|L(δ)|, |C|) because L is bounded below by C > −∞
and L(y + t) ≥ L(δ) for y ∈ R+, t ∈ T since L is decreasing. We use this fact to show that g is Lebesgue

integrable as follows ∫
Y
|g(t, y)|dy =

∫
Y
|L(y + t) · fY |X=x(y)|dy

=

∫
Y
|L(y + t)| · fY |X=x(y)dy

≤ max(|L(δ)|, |C|)
∫
Y
fY |X=x(y)dy

<∞.

Since L is monotone and differentiable, for all y ∈ Y, ∂g∂t (t, y) = L′(y + t) · fY |X=x(y) exists for all t ∈ T .
Since L is convex, differentiable, and decreasing, L′(z) ≤ 0 and L′ is an increasing function. Thus, there

exists δ ≤ inf T so |L′(y+ t)| ≤ |L′(δ)| <∞ for all t ∈ T . Let θ(y) := |L′(δ)| · fY |X=x(y). We have that θ(y)

is Lebesgue integrable because∫
Y
θ(y) · fY |X=x(y)dy = |L′(δ)|

∫
Y
fY |X=x(y)dy = |L′(δ)| <∞.
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Thus, Gx(t) satisfies the conditions of Leibniz rule, and

G′
x(t) = −

∫
Y
L′(t+ y)fY |X=x(y)dy. (42)

C.1.2 Strict Concavity

Since L is strictly convex, it follows that Gx(t) is strictly concave.

C.1.3 Twice Differentiable

We recall the form of G′
x(t) given in (42). We apply integration by parts to G′

x(t). First, suppose that

Y ⊆ [y, y].

G′
x(t) = −

∫
Y
L′(y + t)fY |X=x(y)dy

= −

(
L(y + t)fY |X=x(y)

∣∣∣ȳ
y
−
∫
Y
L(y + t) · f ′Y |X=x(y)dy

)

= −L(ȳ + t)fY |X=x(ȳ) + L(y + t)fY |X=x(y) +

∫
Y
L(y + t) · f ′Y |X=x(y)dy.

We aim to compute

G′′
x(t) = L′(y + t)fY |X=x(y)− L′(ȳ + t)fY |X=x(ȳ) +

d

dt

∫
Y
L(y + t) · f ′Y |X=x(y)dy. (43)

We note that the first two terms are differentiable on R.
Similarly, if Y ⊆ [y,∞), then

G′′
x(t) = −L′(y + t)fY |X=x(y) +

d

dt

∫
Y
L(y + t) · f ′Y |X=x(y)dy. (44)

We apply Leibniz Rule to the integral that appears on the right of (44) and (43). We first show that

h(t, y) = L(y + t) · f ′Y |X=x(y) is Lebesgue integrable. Recall that L is bounded on below by a constant

C > −∞. ∫
Y
|h(t, y)|dy =

∫
Y
|L(y + t) · f ′Y |X=x(y)|dy

=

∫
Y

∣∣∣L(y + t) ·
f ′Y |X=x(y)

fY |X=x(y)

∣∣∣ · fY |X=x(y)dy

≤ max(C,L(0)) ·
∫
Y

∣∣∣f ′Y |X=x(y)

fY |X=x(y)

∣∣∣ · fY |X=x(y)dy

= max(C,L(0)) · EF

[∣∣∣ d
dY

log fY |X=x(Y )
∣∣∣ | X = x

]
<∞.

The last line follows from Assumption 2. Next, we note that by the Monotone Differentiation Theorem, L

is differentiable almost everywhere. As a result, ∂
∂th(t, y) = L′(t + y) · f ′Y |X=x(y) exists for all t ∈ T for

almost all y ∈ Y. Finally, we show that there is an integrable function θ : T → Y for |∂h∂t (t, ·)| ≤ θ. Since L
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is convex and decreasing, L′(z) ≤ 0 almost everywhere and L′ is an increasing function. Thus, there exists

δ < 0 so that |L′(y + t)| ≤ |L′(δ)| <∞ almost everywhere for all t ∈ T . Let θ(y) = |L′(δ)| · f ′Y |X=x(y). We

have that θ(y) is Lebesgue integrable because

∫
Y
|θ(y)| · fY |X=x(y)dy ≤ |L′(δ)| ·

∫
Y

∣∣∣f ′Y |X=x(y)

fY |X=x(y)

∣∣∣ · fY |X=x(y)dy

= |L′(δ)| · EF

[∣∣∣ d
dY

log fY |X=x(Y )
∣∣∣ | X = x

]
<∞.

The last inequality follows from Assumption 2. Thus, we can apply Leibniz rule to show that

G′′
x(t) = L′(t) · fY |X=x(y) +

∫
Y
L′(y + t) · f ′Y |X=x(y)dy.

C.2 Proof of Lemma 10

C.2.1 Once Differentiable

Similar to the proof of Lemma 9, we can apply Leibniz Rule (Klenke, 2013) to show that Gx(t) is once

differentiable on T = (0,∞). Recall that FY |X=x has positive density on Y. We can set g(t, y) := L(y +

t) · fY |X=x(y). Since L is an FGT index, we observe that 0 ≤ L(y + t) ≤ L(0) for y ∈ R+, t ∈ T since L is

decreasing and bounded below by 0. We use this fact to show that g is Lebesgue integrable as follows∫
Y
|g(t, y)|dy =

∫
Y
|L(y + t) · fY |X=x(y)|dy

=

∫
Y
|L(y + t)| · fY |X=x(y)dy

≤ L(0) ·
∫
Y
fY |X=x(y)dy

<∞.

Thus, g(t, y) is Lebesgue integrable.

Since L is an FGT index, it is differentiable except at c. So, for almost all y ∈ Y, ∂g∂t (t, y) = L′(y + t) ·
fY |X=x(y) exists for all t ∈ T .

Since L is an FGT index for α ≥ 1, it is convex, differentiable except at c, and decreasing. Thus,

L′(z) ≤ 0 almost everywhere and L′ is an increasing function. Thus, |L′(y + t)| ≤ |L′(0)| < ∞. Let

θ(y) := |L′(δ)| · fY |X=x(y). We have that θ(y) is Lebesgue integrable because∫
Y
θ(y) · fY |X=x(y)dy = |L′(0)|

∫
Y
fY |X=x(y)dy = |L′(0)| <∞.

Thus, Gx(t) satisfies the conditions of Leibniz rule, and

G′
x(t) = −

∫
Y
L′(t+ y)fY |X=x(y)dy (45)

holds.
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C.2.2 Strict Concavity

We observe that the FGT indices for α ≥ 1 are convex. In addition, they are strictly convex at c in the sense

defined below.

Definition 8 (Strict convexity at a point). A convex function f : R → R is strictly convex at a point c if

for all z1, z2 ∈ R such that z1 < c < z2 and λ ∈ (0, 1),

f(λz1 + (1− λ)z2) < λf(z1) + (1− λ)f(z2).

Let t1, t2 ∈ [0, c] such that t1 < t2. We define y′ = c−λt1− (1−λ)t2. We note that y′ + t1 < c < y′ + t2.

Applying Definition 8, we have that

L(y′ + λt1 + (1− λ)t2) < λL(y′ + t1) + (1− λ)L(y′ + t2). (46)

We note that this result also holds in a small neighborhood about y′. Let ϵ = 1
2 ·min(y′ + t2− c, c− y′− t1).

In this case, y′ + ϵ+ t1 < c < y′ + ϵ+ t2 and y′ − ϵ+ t1 < c < y′ − ϵ+ t2, so (46) holds when y′ is replaced

by y′ + ϵ and y′ − ϵ. Let I = [y′ − ϵ, y′ + ϵ]. We note that under Assumption 2, fY |X(y) > 0 on I.

Gx(λt1 + (1− λ)t2)

= −
∫
Y
L(y + λt1 + (1− λ)t2)fY |X=x(y)dy

= −
∫
I

L(y + λt1 + (1− λ)t2)fY |X=x(y)dy −
∫
Y\I

L(y + λt1 + (1− λ)t2)fY |X=x(y)dy

> −
∫
I

[λL(y + t1) + (1− λ)L(y + t2)]fY |X=x(y)dy −
∫
Y\I

L(y + λt1 + (1− λ)t2)fY |X=x(y)dy

≥ −
∫
I

[λL(y + t1) + (1− λ)L(y + t2)]fY |X=x(y)dy −
∫
Y\I

[λL(y + t1) + (1− λ)L(y + t2)]fY |X=x(y)dy

= λGx(t1) + (1− λ)Gx(t2).

Thus, Gx is strictly concave on [0, c].

C.2.3 Twice Differentiable

We note that the FGT indices for α ≥ 1 can be written as L(z) = ℓ(z) · I(z < c) for a twice differentiable

function ℓ. We recall the form of G′
x(t) given in (45).

G′
x(t) := −

∫
Y
L′(t+ y)fY |X=x(y)dy

= −
∫
Y
ℓ′(t+ y) · I(t+ y < c)fY |X=x(y)dy

= −
∫ c−t

y

ℓ′(t+ y)fY |X=x(y)dy.

We can use Leibniz integral rule to compute G′′
x(t) as follows.

G′′
x(t) = ℓ′(c)fY |X=x(c− t)−

∫ c−t

y

ℓ′′(t+ y)fY |X=x(y)dy.
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D Data

D.1 Predictor Selection

This section describes our rubric for selecting covariates from household surveys for inclusion as predictors

when learning transfer policies. Our goal is to select only characteristics that are plausibly verifiable. To

that end, we build a rubric from an initial list of covariates actually used in PMTs implemented in low-

and middle-income countries, as described in Section 3. In particular, we define categories of covariates,

generalizing where appropriate from individual covariates that have been used. For example, if previous

PMTs used the material out of which the house’s walls are made, then we take that as justification for also

using the material out of which other parts of the house, such as the roof, are made. The resulting categories

(labelled (a), (b), (c), etc. below) are exhaustive of the categories of variables within each top-level group

(e.g., household demographics) that we include.

We also exercise judgment in excluding some variables that have been used in real-world PMTs but that

we deem too difficult to plausibly verify at large scale. Examples include: Age of dwelling; indicators of food

security, such as whether household members had skipped meals in the past week; use of fertilizer; use of an

internet connection; income and private transfers (like foreign remittance); and ownership of a mobile phone

or usage of someone else’s mobile phone.

We use the resulting rubric as a guide when selecting predictors to use from each survey. The rubric,

edited for clarity, is as follows:

1. Household demographics

(a) Counts of household members by type, including the overall number of household members, the

number of male and female members, the numbers in various age-based subcategories such as

children, adults, elderly adults / senior citizens, and the number of specially-abled members. If

the survey does not pre-define age-based categories then we will ourselves count the number of

children 17 and under, and the number of older adults 65 and older. Examples of prior usage for

the number of elderly adults: 60 and over for Below Poverty Line (BPL) classification in India

(Planning Commission, 2011) or 65 and over (Alatas et al., 2012; Hanna and Olken, 2018).

(b) Household head: Age, gender, and marital status. Examples of prior usage: Alatas et al. (2012)

include married/unmarried; Fernandez and Hadiwidjaja (2018) include single/married/divorced;

Kidd and Wylde (2011) include widow status.

(c) Ethnicity, tribe, and caste of the household/household head.

2. Human capital

(a) Educational attainment of the household head. Depending on the source this may take the form

of years completed, highest academic level completed, or simply a literacy indicator. Examples of

prior usage: Alatas et al. (2012), Planning Commission (2011, 2012).

(b) Maximum educational attainment of all adult members. Again, this may be measured in years,

in level completed, etc.28 Example of prior usage: Kidd and Wylde (2011)

(c) Maximum educational attainment of all female adult members. Example of prior usage: Kidd

and Wylde (2011).

28We take the maximum rather than including the attainment of all members individually in order to produce a per-household
predictor.

55



(d) Number of children currently enrolled in school.

3. Household asset: presence and number owned

(a) We do not include ownership-structure details beyond the fact of asset ownership.

(b) Dwelling characteristics such as per capita number of rooms (Kidd and Wylde, 2011) or floor space

(Alatas et al., 2012), material used to construct floors, walls, or roof, etc., as well as an indicator

for homeownership itself. Examples of prior usage: Alatas et al. (2012) use binary indicators for

home-ownership and roof materials. Hanna and Olken (2018) consider more granular categories.

(c) Presence and physical characteristics of amenities such as: Type of latrine, water source, lighting

source, drainage system, waste collection, access to electricity and gas, type of cooking fuel,

cable connection. Examples of prior usage: Alatas et al. (2012) use a simple binary indicator for

availability of clean water within the house. Hanna and Olken (2018) use more granular categories

of water source.

(d) Ownership of consumer durables such as appliances (e.g. radio, television, refrigerator, generator,

cooker, heater, fan, air conditioner); transportation (e.g. car, bicycle, motorbike); furniture (e.g.

sofa, bed etc); and devices (e.g. computers).

(e) Productive agricultural assets including land, livestock, irrigation facilities, and farm machinery.

We exclude cultivation details, such as crop types and amounts, as they may not be verifiable.

We include the amount of land owned. Examples of prior usage: Planning Commission (2011,

2012) include farm machinery.

(f) Productive non-agricultural assets, e.g a sewing machine.

(g) We generally do not include finantial assets, as we expect the kinds of financial assets held by

poor households to be hard to verify, but we include any that they hold as part of a government

scheme for which the government might plausibly hold records. Example of prior usage: Planning

Commission (2011, 2012) include usage of the Kisan credit card scheme in India.

(h) We exclude crop stores, as they may not be easy to verify.

4. Livelihood activities

(a) Primary sector of employment of the household head (e.g., agriculture, manufacturing, services).

(b) Primary occupation of the household head (e.g., self-employed, salaried employee, casual laborer,

etc.).

(c) We do not include the occupations of other members of the household.

(d) Ownership of enterprises.

(e) Receipt of other public transfers, including amount, if this could plausibly be verified by merging

in other administrative records. We omit transfers when it is unclear whether they are administra-

tively documented, such as child support or transfers from non-government institutions. Example

of prior usage: (Camacho and Conover, 2011) describes a poverty census which includes social

security information.

5. Geographic indicators

(a) Urban/rural status, including any further available classifications such as peri-urban.
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(b) Administrative geographic information: Which administrative division a household is in. Note

that some care is required in the treatment of these indicators, as surveys may include region

identifiers at a finer granularity than that at which they are representative. To obtain results which

reflect expected performance across households anywhere in each country, we include geographic

identifiers only at granularities at which the survey is representative. For example, if a survey

were to sample households from all districts but only a subset of subdistricts, we would include

district identifiers but not subdistrict identifiers as predictors.

(c) Distance to important locations such as district centers, markets, or public facilities such as post

offices. Examples of prior usage: Alatas et al. (2012) use distance to district centers and markets.

Hanna and Olken (2018) use distance to a post office.

(d) Environmental conditions such as rainfall history. Del Ninno and Mills (2015) provides a few case

studies that illustrate feasibility.

6. Community characteristics

(a) Presence of publicly or privately provided services such as healthcare. Examples of prior usage:

Alatas et al. (2012) uses an indicator for presence of a doctor. Kidd and Wylde (2011) uses an

indicator for presence of a midwife.

(b) Presence of publicly or privately provided infrastructure such as paved roads, banking facilities,

or regional government offices. Examples of prior work: Alatas et al. (2012); Kidd and Wylde

(2011)use an indicator for presence of banking facilities. Kidd and Wylde (2011) use an indicator

for presence of regional government offices.

(c) Population characteristics such as headcount or population density. Example of prior work: Kidd

and Wylde (2011).

D.2 Outcome Construction

We calculate consumption per capita by dividing total household consumption by household size without an

adult equivalence scale adjustment, following the World Bank Poverty and Inequality Platform’s methodology

(World Bank, 2025a).

Wherever possible we use the consumption aggregates provided along with the disaggregated data for

this purpose. Accounting for transfers, housing, and other durable goods are among the thornier issues in

measuring consumption (Amendola and Vecchi, 2022), and the sources vary somewhat in the ways they do

this (see Table D.1). That said, large majorities include the value of both cash and in-kind transfers; include

an estimate of the value of housing services consumed; and include an estimate of the value of services from

non-housing durable goods. We apply temporal and spatial price deflators when they are provided as part

of official data. In cases where one or both is not present, we do not attempt our own temporal or spatial

correction.

We convert consumption aggregates from all surveys from local currency units (LCU) to 2017 PPP USD

using Consumer Price Index and PPP conversion factors provided by the World Bank (World Bank, 2023).

This requires identifying the base year of the LCUs in which the consumption aggregate is defined. The base

year is clear from survey context and/or documentation in most cases; in others we infer it by examining

data. For example, the eight surveys that make up the Enquête Harmonisée sur le Conditions de Vie des
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Ménages (EHCVM) series, run in eight West African countries (Benin, Burkina Faso, Côte d’Ivoire, Guinea-

Bissau, Mali, Niger, Senegal, and Togo), were all conducted between 2018 and 2019. Their documentation

does not specify one or the other year as the currency base year, but the data include a temporal deflator;

these take on values very near 1 (within roughly 3%) and have mean values extremely close to 1. Most of

the surveys have values near 1 around the middle of the time series (early 2019). A majority of samples are

from 2019 in all surveys, and the deflator having a mean of 1 indicates that the base currency is an average

of currency units across surveyed samples—also suggesting 2019, the year during which the average sample

is drawn. Given these observations, we use a currency unit of 2019 West African francs for all EHCVM

surveys.

D.2.1 Manual consumption aggregation of India’s HCES 2022-23 survey

For India’s HCES 2022–23 survey, no pre-existing aggregate is available as of this writing, so we construct

one, following the methodology described in the official report (National Sample Survey Office, 2024, Chapter

2). This involves first constructing four sub-components as follows:

• Reported food and non-food expenditure: We convert household expenditures elicited with

varying recall periods (one week for food items, one month for non-food items, and one year for

education, health, rent, etc) to daily values.

• Durables: We include expenditure on durables during the last year in the consumption aggregate, in

alignment with the official methodology. 29

• Housing costs: We include only actual rent paid for housing and garage, and do not impute rent

equivalence for non-rental housing, for consistency with the official methodology.

• Transfers: We include goods and services received in kind or as perquisites in household consumption

when they were received in exchange for services, except for meals received from other households.

Public transfers, such as food or durable goods from welfare schemes, are valued at state-by-sector

(rural/urban) modal prices.

Aggregating these components into a household per capita total involves some nuance, as the underlying sur-

vey collected information about them via three separate questionnaires administered in consecutive months,

and recorded household size sometimes varied across those visits. Following the official methodology, we

divide the expenditure reported in each questionnaire by the size of the household at the time it was admin-

istered, and then sum those per-capita components. We then convert the resulting figure to 2017 USD PPP

using the same conversion approach we use across surveys, described above.

The resulting aggregate tracks the official values reported in National Sample Survey Office (2024) closely.

That report provides two separate state-by-sector (rural/urban) “monthly per capita consumption expendi-

ture” aggregates: one that excludes the value of free goods received from welfare schemes (other than the

Public Distribution System), and one that includes them valued at local prices. We convert our household

daily per-capita aggregates into monthly equivalents, aggregate to state-by-sector weighted averages, and

compare against both official series. Our estimates align almost one-to-one with the official figures which

exclude the goods listed above: 16 of 18 states match exactly for both sectors, and for the remaining two, the

only differences are in the rural sector (1.5% in Bihar and 0.06% in Andhra Pradesh). When comparing our

29The data do not include enough information to calculate standard flow measures of use value.

58



aggregate to the official figures which include the goods listed above, mean differences are typically less than

0.5% of the official figure, with the largest gap being 1.6% (Bihar, rural). In most states the discrepancy is

under 0.1%, and 5 of 18 states match exactly for both sectors. We think these minor differences most likely

reflect the granularity of the local prices used in valuation.
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D.3 Non-Survey Data

In addition to the household survey data that forms the primary basis for our empirical results, we rely

on some additional data. Specific usages are reported alongside corresponding results and exhibits, and we

compile the full list here for reference.

• Country-level poverty data from theWorld Bank Poverty and Inequality Platform (World Bank, 2025b):

– Poverty headcount rate and poverty gap index for each country for which we use a survey, from

the year of that survey, interpolated if necessary.

– Poverty headcount rate and poverty gap index for all countries in the world where data are

available, from the most recent year for which each rate/gap index is available.

• Country-level poverty headcount data from the World Poverty Clock.

• Country-level population estimates from the World Bank Development Indicators (World Bank, 2023).

• Currency exchange rates between local currency units (LCU) and US dollars. These rates are drawn

from the World Bank’s Development Indicators (World Bank, 2023). The World Bank’s figures are in

turn drawn from the IMF’s International Financial Statistics database, whose indicators are hosted at

IMF (2025). We use IMF data directly for exchange rates for Taiwan and Tuvalu, both of which were

missing from the World Bank’s exchange rate dataset at the time of access.

Some exchange rate values were missing from both sources at the time of access: Guinea’s 2021 exchange

rate, Myanmar’s 2021 exchange rate, Venezuela’s 2021 exchange rate, and Zimbabwe’s 2017 exchange

rate. We estimate these missing values by assuming that the nominal currency exchange rate and the

conversion factor from LCU to USD PPP (international dollars) have the same ratio as in the nearest

year with complete data. By assuming that ratio, we are able to obtain an estimate for the nominal

exchange rate based on the conversion factor from LCU to USD PPP, which in all cases is present for

the given year.

• Conversion factors between LCU and USD PPP (international dollars). These factors are drawn from

the World Bank’s Development Indicators (World Bank, 2023). We fill some gaps in the World Bank

dataset using data from the IMF30 (IMF, 2025): Taiwan (2017, 2021); Venezuela (2021); Yemen (2017,

2021).

Both datasets were missing Venezuela’s 2017 conversion factor at the time of access. We estimate this

value by assuming that the nominal currency exchange rate and the conversion factor from LCU to

USD PPP (international dollars) have the same ratio as in the nearest year with complete data. By

assuming that ratio, we are able to obtain an estimate for the conversion factor based on the nominal

exchange rate for that year, which is present in IMF data.

• Country-level Consumer Price Index data (World Bank, 2023), to adjust for inflation.

• Net official development assistance and official aid received, by country (World Bank, 2023).

• GDP by country and region (World Bank, 2023).

• Revenue as percentage of GDP by country (IMF, 2025) and by region (World Bank, 2023).

30Indicator name: Rate, Domestic currency per international dollar in PPP terms, ICP benchmarks 2017-2021
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Table E.3: Poverty Rate and Share of World’s Poor for In-Sample Countries

Country Poverty Rate Share of World’s Poor

Benin 10.60 0.25
Burkina-Faso 27.38 1.07
Colombia 13.29 1.18
Côte d’Ivoire 7.34 0.39
Ethiopia 15.01 3.28
Ghana 17.66 1.01
Guinea-Bissau 25.69 0.09
India 1.30 3.19
Kenya 27.55 2.59
Malawi 73.20 2.63
Mali 19.08 0.77
Niger 51.93 2.31
Nigeria 31.66 12.27
Senegal 9.13 0.28
South Africa 21.60 2.32
South Sudan 82.15 1.60
Tanzania 36.67 4.16
Togo 24.55 0.39
Uganda 36.03 2.98

This table reports the poverty rate and the share of the world’s poor by country for each country in our sample. “Poverty

Rate” is poverty rate (%) of each country based on World Poverty Clock (data source, accessed 25 August 2025) and “Share of

World’s Poor” is the fraction of the world’s poor living that lives in each country in our sample. The “Share of World’s Poor”

is computed from World Poverty Clock country-level poverty rates and populations (data source, accessed 25 August 2025).
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Figure E.1: Policy Cost vs. Post-Transfer Poverty Measures by Country

(a) Benin
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(b) Burkina-Faso
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(c) Colombia
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(d) Côte d’Ivoire
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(e) Ethiopia
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(f) Ghana
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(g) Guinea-Bissau
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(h) India
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(i) Kenya
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(j) Malawi

0 10 20 30 40 50 60 70
Post-Transfer Poverty Rate (%)

0

1

2

3

4

5

6

Po
lic

y 
Co

st
 ($

 B
illi

on
 P

er
 Ye

ar
)

0 5 10 15 20 25 30
Post-Transfer Poverty Gap Index (%)

0

1

2

3

4

5

6

Po
lic

y 
Co

st
 ($

 B
illi

on
 P

er
 Ye

ar
)

UBI $2.15
UBI (Variable)
PMT (NN)
PMT (Lasso)
Gap Minimization (Binary)
Gap Minimization (Unrestricted)
Rate Minimization (Binary)
Rate Minimization (Unrestricted)

(k) Mali
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(l) Niger
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(m) Nigeria
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(n) Senegal
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(o) South Africa
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(p) South Sudan
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(q) Tanzania
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(r) Togo
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(s) Uganda
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This figure reports country-by-country results for gap minimization (binary/unrestricted), rate minimization (bi-

nary/unrestricted), PMT (with neural network / with lasso), UBI $2.15, and UBI at a country-specific amount.
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