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Abstract

We study the problem of finding distance-preserving graph representations. Most
previous approaches focus on learning continuous embeddings in metric spaces
such as Euclidean or hyperbolic spaces. Based on the observation that embedding
into a metric space is not necessary to produce faithful representations, we explore
a new conceptual approach to represent graphs using a collection of trees, namely
a tree cover. We show that with the same amount of storage, covers achieve lower
distortion than learned metric embeddings. While the distance induced by covers
is not a metric, we find that tree covers still have the desirable properties of graph
representations, including efficiency in query and construction time.

1 Introduction

The study of distance-preserving graph embeddings [5] has attracted interest in the past decades due
to the widespread presence of graphs in real-world applications such as biology [23], chemistry [11],
recommender systems [24], and knowledge bases [4, 6]. Embeddings into simpler geometric spaces
can allow us to transform complicated problems on the original graph (e.g. nearest neighbor search)
into easier ones in the embedding space. Desirable properties for these representations include:

1. faithfulness, i.e. how well they preserve distances from the original metric [12, 20],
2. efficiency, i.e. how fast they can be built and queried.

The dominant approach to finding such representations is embedding into low-dimensional Euclidean
spaces. However, these embeddings may not achieve low distortion, meaning that the embedding
distances may not closely approximate the graph distances. Embeddings into non-Euclidean metric
spaces yield low-distortion representations when the geometry of the space matches the structure of
the data [12, 15]. For instance, trees can be represented with arbitrarily low distortion in hyperbolic
space [20, 21], while Bourgain’s theorem shows that this is not possible in Euclidean space [14].

Selecting the right metric space to embed an arbitrary graph is a challenging problem. Our work
builds on the observation that in many cases, the metric structure may not be essential for obtaining
faithful embeddings. Any low-distortion embedding (whether it lies in a metric space or not) has the
desirable property that it preserves the structure of the data faithfully.

This motivates us to consider a new conceptual approach of representing graphs using tree covers,
which have generated interest in theoretical computer science because they can approximate the
original graph distances more faithfully than metric embeddings. A tree cover of a graph is a
collection of trees where every pair of vertices has a low-distortion path in one of the trees. The
distance function induced by tree covers is not a metric (taking the minimum over all the distances in
the cover components means that the triangle inequality is not satisfied), but they can still achieve
low distortion. For example, the metric of the n-point cycle incurs Ω(n) distortion when embedding
into a tree metric [18], but a tree cover on just 2 trees can preserve the distances exactly. Although
polynomial-time algorithms for constructing tree covers have been studied, they are not practical for
real-world graphs.
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In this paper, we propose a greedy tree cover algorithm to compute faithful and efficient graph
representations.

1. Given an unweighted graph, our algorithm sequentially adds shortest-path trees to the cover,
with the goal of ensuring that there exists a short path between each node and a root of a
tree in the cover.

2. Our proposed algorithm constructs a k-tree cover in O(kn2)-time and can answer queries
efficiently by leveraging the simple structure of trees.

We validate our method on real-world graphs and find that tree covers achieve lower distortion than
metric embedding approaches with the same amount of storage. Finally, we study the performance of
covers compared to learned metric embeddings, and find that covers yield at least a 1750x speedup in
construction-time on these real datasets. Some of this efficiency is traded off at query-time.

2 Related Work

Embeddings into low-dimensional spaces. Continuous representations are efficient in terms of
query-time and storage; a d-dimensional embedding of a graph on n nodes permitsO(d)-time distance
queries and requires nd parameters. When the structure of the graph matches the geometry of the
embedding space, these embeddings can achieve low distortion. Hyperbolic geometry is known to
embed trees and hierarchical data faithfully [7, 15, 20, 21], and analogous connections exist between
spherical geometry and cycles [20], as well as product spaces and graphs with a mix of treelike and
cyclical structures [12]. Nevertheless, determining the appropriate metric space to embed an arbitrary
graph is challenging.

Embeddings into tree metrics. Many combinatorial problems on graphs are easier to solve if the
graph is a tree, motivating many works on embedding into tree metrics [1, 10]. Trees require low
storage and allow for constant-time queries with the help of short distance-labeling schemes [9].
However, the distortion achieved by a tree embedding is tied to the δ-hyperbolicity of the original
metric, or how far the original metric is from a tree metric [1, 22]. Embedding into a tree metric may
not yield a faithful representation if the original metric has high δ-hyperbolicity.

Low-distortion tree covers. Previous works on tree covers derive bounds on the number on trees
needed to achieve a particular level of distortion for general metrics, as well as planar and doubling
metrics [3, 8, 13]. For a general metric on n points, a tree cover requires Ω(n1/α) trees to achieve
distortion α [3]. Although not as much is known about the distortion that can be achieved when the
number of trees in the cover is small, there is a deterministic algorithm for constructing a Ramsey
tree cover of size k which achieves distortion O(n1/k · (log n)1−1/k) for a general n-point metric [3].
A Ramsey tree cover has the stronger property that for every node there exists a tree in the cover in
which the node has low-distortion paths to all other nodes. To the best of our knowledge, we are the
first to evaluate the quality and performance of these tree cover algorithms in a practical setting.

3 Model

3.1 Problem setup

Previous works treat learning graph representations as a metric embedding problem. We describe
our relaxation of the metric embedding setting and define average distortion, a standard measure for
assessing the faithfulness of the embedding.

Problem definition. Given a connected, unweighted graph G = (V,E) on n nodes and its shortest
path metric dG(·, ·), we aim to find an embedding f : G→ X , where X has a symmetric function
dX(·, ·) : X ×X → R≥0 and dX(x, y) = 0 iff x = y, such that the average distortion:

dave =
1(
n
2

) ∑
u,v∈V :u6=v

|dX(f(u), f(v))− dG(u, v)|
dG(u, v)

is minimized. Note that standard metric embedding adds the requirement that (X, dX) is a metric
space, i.e. dX(·, ·) satisfies the triangle inequality. We relax this constraint here and consider tree
covers to obtain faithful graph representations.
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Diseasome Yeast CS PhD GridMouse GridWorm
|V | = 516 |V | = 1458 |V | = 1025 |V | = 791 |V | = 3343
|E| = 1188 |E| = 1948 |E| = 1043 |E| = 1098 |E| = 6437

Metric

E10 0.0562 0.0795 0.0558 0.0601 0.0970
H10 0.0402 0.0742 0.0508 0.0531 0.0795
S10 0.0602 0.0811 0.0581 0.0634 0.1083

(H2)5 0.0344 0.0706 0.0375 0.0445 0.0792
(H5)2 0.0354 0.0713 0.0345 0.0466 0.0773
(S2)5 0.0583 0.0821 0.0565 0.0630 0.1096
(S5)2 0.0595 0.0798 0.0588 0.0630 0.0998

Covers

BFS (5 Trials) 0.0280 0.0529 0.0033 0.0206 0.0660
MST (5 Trials) 0.3617 0.3026 0.0058 0.1364 0.5451

Ramsey 0.0298 - - 0.0111 -

Ours 0.0213 0.0208 0.0001 0.0056 0.0347

Table 1: Average distortion for different methods. The dash indicates the experiment took more than
5 hours to run.

Spanning tree covers. Given a graph G = (V,E) and its shortest path metric dG, an (α, k)-
spanning tree cover is a collection of k spanning trees of G, T = {T1, T2 . . . Tk} such that: for every
pair of vertices u, v ∈ V , there exists a path between u, v in one of the trees that achieves at most
α-distortion. We define the distance between two vertices u, v ∈ V in the tree cover as follows:

dT (u, v) = min
i∈[k]

dTi
(u, v).

We note that the cover distance dominates the graph metric, i.e. dG(u, v) ≤ dT (u, v) ∀u, v ∈ V .

3.2 Cover Algorithm

We build a tree cover by selecting k shortest-path trees of the graph G = (V,E). A shortest-path
tree rooted at a node r is a spanning tree T of G, such that dT (r, v) = dG(r, v) for any v ∈ V . In an
unweighted graph, the shortest-path tree rooted at r can be obtained via breadth-first search (BFS)
from r.

The problem of selecting the optimal k shortest-path trees such that the distortion is minimized is an
NP-hard problem [17], so we propose GreedyTreeCover, a greedy algorithm for selecting the trees.
Its inputs include the graph G, the shortest-path metric dG, and the number of trees in the cover k.
We aim to select a set of root nodesR = {r1, r2, . . . rk} of the shortest-path trees {T1, T2, . . . Tk}
so that each vertex v ∈ V is close to one of the cover roots.

We maintain a set of root nodes Rt of size t chosen thus far and an array A maintaining each
node’s current depth in the cover, so ARt [v] = minr∈Rt dG(r, v). We select rt+1 by finding the
node that decreases in the cover depths most significantly, relative to the previous depths, which
takes O(n2) time. Finally, we set Rt+1 = Rt ∪ {rt+1} and update the node depths in the cover.
Pseudocode for this algorithm is provided in the appendix (Appendix B). The intuition for this
algorithm is that the distance between two nodes u, v in a tree T rooted at r can be written as
dT (u, v) = dT (r, u) + dT (r, v)− 2dT (r, u ∨ v), where u ∨ v is the lowest common ancestor of u
and v in T . If r = u ∨ v, then shrinking dT (r, v) reduces dT (u, v).

GreedyTreeCover produces a k-tree cover of the graph in O(kn2) time. Storing the tree cover
requires O(nk) space, as we store the n− 1 edges of each tree. Performing a distance query requires
computing a distance in each tree, taking O(nk)-time overall. There are many strategies for reducing
the query-time, such as storing distance labels for each node so that distances can be queried in
constant-time [9].
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Diseasome Yeast CS PhD GridMouse GridWorm
CT QT CT QT CT QT CT QT CT QT

Metric 3.5e5 0.846 1.6e6 0.896 5.6e5 0.36 3.4e5 0.359 3.6e6 0.851
BFS 53.9 0.313 195 0.428 120 0.97 91.89 0.564 489 0.510
MST 132 0.727 302.8 1.67 183 1.42 159 1.082 997 3.907
Ramsey 3.9e6 0.385 >1.8e7 - >1.8e7 - 1.7e7 0.815 >1.8e7 -
Ours 140 0.292 397 0.384 255 1.00 195 0.584 1045 0.379

Table 2: Performance analysis of the construction time (CT) and query time (QT) in milliseconds.

4 Experiments

4.1 Experimental Setup

Datasets. We use 5 real-world graph datasets: CS PhD, a treelike graph of Ph.D. advisor-advisee
relationships [16] and four biological network datasets which vary in their density from [19].

Baselines. We compare GreedyTreeCover to the following baselines. First, we compare to learned
metric embeddings, such as Euclidean (Ed), hyperbolic (Hd), spherical (Sd), and product space
embeddings. We train these baselines with the distortion-based loss function from [12]. In addition,
we compare to three discrete tree cover algorithms: BFS, MST, and Ramsey. BFS forms a tree
cover by randomly selecting shortest-path trees. MST forms a tree cover by repeating the follow
procedure: assign random weights sampled from a uniform distribution to the edges of the graph, run
Kruskal’s minimum spanning tree algorithm, and add the resulting (unweighted) tree to the cover.
Lastly, Ramsey denotes a discrete spanning tree cover algorithm which has theoretical guarantees
[3]. The cover is generated by running the petal decomposition algorithm [2] to create low-distortion
spanning trees until the Ramsey criteria is met. If the criteria is met prior to obtaining k trees, we run
petal decomposition from randomly selected initial nodes until k trees are generated.

4.2 Distortion Results

For fair comparison, we fix the amount of storage across all methods. We consider 10-dimensional
continuous embeddings and tree covers on 10 trees. The results on BFS and MST are averaged over 5
trials. We observe that our greedy algorithm obtains the lowest distortion across all datasets (Table 1).

4.3 Performance Analysis

We compare the construction-time (CT) and query-times (QT) of the metric embedding method
that achieves lowest distortion to those of discrete tree covers. The metric embedding methods that
perform best on these datasets are the product space embeddings into (H2)5 and (H5)2. CT results are
averaged over 5 trials and QT results are the estimated time per query over 2000 queries. We observe
that our method achieves at least a 1750x speedup in CT relative to the metric embedding methods
(Table 2). The CT of BFS and MST are even faster than our method but typically achieve worse
distortion. Ramsey takes over 5 hours to run on Yeast, CS PhD, and GridWorm. GreedyTreeCover
trades off its efficiency in CT with slower queries. Our method’s QT typically scales with the number
of nodes in the graph. In contrast, we find that the QT of the metric embeddings depends on the
number of components in the embedding space because a separate distance computation is required
for each component.

5 Conclusion

We introduced the GreedyTreeCover algorithm and observed that discrete tree covers can achieve
lower distortion than metric embeddings while using the same amount of storage. We believe that
relaxing the requirement to maintain the metric structure in graph representations will open a new
avenue to more efficient and faithful representations than classical embedding methods.
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A Definitions

Dominating. For two metric spaces G and X defined on the same vertex set V , X dominates G if dX(u, v) ≥
dG(u, v) for all u, v ∈ V .

Multiplicative Distortion. Given an embedding f from a metric space (G, dG) to a metric space (X, dX)
which dominates G, we say that f obtains multiplicative distortion α if, for all u, v ∈ G, it holds that

dX(f(u), f(v)) ≤ α · dG(u, v).

B Cover Algorithm

We provide pseudocode for the tree cover algorithm. Suppose that ShortestPathTree(G, r) is a helper function
that returns the shortest path rooted at node r in a graph G.

Algorithm 1: GreedyTreeCover(G, k, dG)

Input: An unweighted, connected graph G, the number of trees in the cover k, an n× n matrix
representing the shortest path metric dG.

Output: A set of k shortest path trees
Select tree with lowest average node depth and add to cover.
r1 ← argmini∈[n]

∑
j dG[i][j]

Initialize tree cover roots.
R← {r1}
Initialize cover depths.
A← dG[r1]
for 1 ≤ i < k do

The next tree added to the cover yields the most significant reduction in cover depths, relative
to the previous depths.
M ← 0
ri ← None
for 0 ≤ v < n and v /∈ R do

B ← dG[v]
m←

∑
j∈V \R max(A[j]−B[j], 0)/A[j]

if m > M then
M ← m
ri ← v

Add ri to the cover and update cover depths.
R← R ∪ {ri}
A← [min(A[j], dG[ri][j]) for j ∈ V ].

T ← {ShortestPathTree(G, r) for r ∈ R}
return T

C Additional Distortion Results

We evaluate on the same datasets described in Section 4.1. We compare a tree cover on d trees generated
via GreedyTreeCover to learned metric embeddings into Euclidean (Ed) and hyperbolic (Hd) spaces. For
fair comparison, the amount of storage used across all methods is fixed. We consider d-dimensional metric
embeddings and tree covers on d trees where d ∈ [2, 4, 8, 16, 32]. In Figure 1, We observe that our method
achieves lower distortion at these dimensions. The tree cover approaches continue to improve as the dimension
is increased, but the metric embeddings into Euclidean and hyperbolic spaces appear to plateau earlier.

D Experiment Details

For training the metric embeddings in Section 4.1, we use the setup provided in [12], taken from https:
//github.com/HazyResearch/hyperbolics. The optimization framework was implemented in PyTorch.
The distortion-based loss function was optimized with SGD using minibatches of 65536 edges, and we trained
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Figure 1: The average distortion across all methods improves as dimensionality increases. Our
method achieves lower distortion than the baselines across the evaluated dimensions.

for 5000 epochs. We specified the following commandline arguments: –resample-freq 5000, -g, –subsample
1024, and –riemann. The learning rate was chosen from a grid search among {10, 30, 100, 300, 1000} for each
method.
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