Reliable Decisions with Threshold Calibration Roshni Sahoo¹, Shengjia Zhao¹, Alyssa Chen², Stefano Ermon¹

¹rsahoo, sjzhao, ermon @ cs.stanford.edu, ²alyssa.chen@utsouthwestern.edu

Example: Hospital Scheduling Decisions

Forecaster predicts patient length-of-stay in the hospital.

Hospital decides whether they have capacity to admit new patients based on threshold decision on model's predictions of current patients' length of stay.

Question: What notion of calibration is necessary and sufficient to guarantee that a forecaster (ML model) enables decision makers to predict their decision loss prior to deployment under threshold decision rules?

Reliability Gap

We define the reliability gap to be the absolute difference between the predicted decision loss and the true decision loss.

Definition (Reliability Gap). Given a forecaster h, we define the the reliability gap $\gamma(\delta, \ell)$ of a particular decision rule δ under a loss function ℓ as

 $\gamma(\delta,\ell) = |\mathbb{E}_X \mathbb{E}_{\tilde{Y} \sim h[x]}[\ell(X,\tilde{Y},\delta(X))] - \mathbb{E}_X \mathbb{E}_{Y \sim h^*[x]}[\ell(X,Y,\delta(X))]|.$

Calibration Definitions

Definition	(Average Calibration). A forecaster h satisfies average calibration if
	$\Pr[h[X](Y) \le c] = c \forall c \in [0,1].$

Definition (Threshold Calibration). A forecaster h satisfies threshold calibration if $\Pr[h[X](Y) \le c \mid h[X](y_0) \le \alpha] = c \quad \forall y_0 \in \mathcal{Y}, \alpha \in [0, 1], \forall c \in [0, 1].$

where \mathcal{F} is space of CDFs corresponding to the forecaster's model family.

