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Introduction

Decision makers often aim to learn a treatment as-
signment policy under a capacity constraint on
the number of agents that they can treat. When
agents can respond strategically to such policies,
competition arises, complicating the estimation
of the effect of the policy. Examples: college ad-
missions, job hiring.

Treatment Assignment Model

Let q ∈ (0, 1). At each time step t ∈ {1, 2, 3...},
the decision maker assigns treatments to 1−q pro-
portion of a target population based on observed
covariates x ∈ X . At time t, the decision maker’s
policy is

π(x, ϵ;βββ, st) = I(βββTx + ϵ > st),
where βββ, st are policy parameters at time-step t,
and ϵ noise sampled from a mean-zero distribution
G. At time-step t + 1, an agent with type ν ∼
F will report covariates x(βββ, st, ν) to the decision
maker, reacting strategically to the policy deployed
in time step t. At time-step t + 1, the decision
maker’s policy is

π(x, ϵ;βββ, st+1) = I(βββTx + ϵ > st+1),
where st+1 is determined by the q-th quantile of
marginal distribution of βββTxi(βββ, st, ν) + ϵ.

Policy Loss

The decision maker observes a loss ℓ(π, ν) if they
assign a treatment π ∈ {0, 1} to an agent with
type ν. The population policy loss at time-
step t + 1 is L(βββ, st, st+1), where
L(βββ, s, r) = Eν∼F,ϵ∼G [ℓ(π(x(βββ, s, ν), ϵ;βββ, r), ν)] .

Agent Behavior Model

Following Frankel & Kartik (2019), we assume each
agent has a private type ν = (ηηη,γγγ) ∼ F .
ηηη ∈ X - raw covariates.
γγγ ∈ G - ability to modify their covariates.

Agents myopically aim to maximize their utility
with respect to a previous policy.
u(x;βββ, s, ν) = − cν(x − ηηη;γγγ)︸ ︷︷ ︸

cost of deviating from ηηη

+ π(x, ϵ;βββ, s)︸ ︷︷ ︸
reward

.

The agent best response is defined as
x(βββ, s, ν) = argmax

x∈X
Eϵ∼G [u(x;βββ, s, ν)] .

The agent’s score βββTx(βββ, s, ν) is visualized.
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Best Response Score vs. Threshold

Equilibrium Policy Loss

At an equilibrium induced by a fixed βββ, the level of com-
petition is fixed over time. Let s(βββ) be the equilibrium
threshold induced by βββ. If st = s(βββ), then we have that

st+1, st+2 · · · = s(βββ).
The decision maker’s equilibrium policy loss is given
by Leq(βββ) = L(βββ, s(βββ), s(βββ)).

Mean-Field Regime

We consider mean-field regime where there is an infi-
nite number of agents. Let Pβββ,s be the distribution over
scores when agents best respond to βββ, s, and let q(Pβββ,s) be
its q-th quantile. The level of competition evolves via de-
terministic fixed-point iteration.

st+1 = q(Pβββ,st) t = 1, 2, . . .

The mean-field equilibrium threshold s(βββ) under a fixed βββ
satisfies s = q(Pβββ,s).

Mean-Field Equilibrium Theorem
When the variance of the noise distribution G is suffi-
ciently high, the mean-field equilibrium threshold exists
and is unique and varies smoothly w.r.t. βββ.

Implication: Leq(βββ) is differentiable! This enables learn-
ing optimal policies via gradient descent.

dLeq

dβββ︸︷︷︸
policy effect

= ∂L

∂βββ︸︷︷︸
model effect

+
( ∂L

∂s
+ ∂L

∂r

)
· ∂s

∂βββ︸ ︷︷ ︸
equilibrium effect

.

Finite-Sample Approximation

We consider the regime with a finite number of agents.
Let P n

βββ,s, q(P n
βββ,s) be the empirical distribution over scores

when agents best respond to βββ, s and its q-th quantile. The
level of competition oscillates via stochastic fixed-point
iteration.

ŝt+1
n = q(P n

βββ,ŝt
n
) t = 1, 2 . . . .

As n, t grow large, we expect iterates to approximate the
mean-field equilibrium threshold.
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Stochastic Equilibria

Finite Model n = 100
Finite Model n = 1000
Finite Model n = 10000
Mean-Field Model

Stochastic Equilibria Theorem
Let ϵ, δ ∈ (0, 1). Let q(Pβββ,s) be a contraction in s with
Lipschitz constant κ. Let k = ⌈log( ϵ

2S)
log κ ⌉. For t such that

t ≥ k and n such that

n ≥ 2
ϵ2(1 − κ)2D2 log(2k

δ
),

we have that
P (|ŝt

n − s(βββ)| ≥ ϵ) ≤ δ.

Learning Policies

Following Wager & Xu (2020), we can estimate
dLeq
dβββ in finite samples without disturbing the equi-

librium via mean-zero perturbations.

Our Estimator

▷For each agent i, we perturb βββ, s as follows
βββi = βββ + bnζζζ i ζζζ ∈ {−1, 1}d

si = s + bnζi ζ ∈ {−1, 1}d.

▷Observe ℓℓℓ,πππ ∈ Rn - losses, treatment assign-
ments.

▷Run OLS from perturbations to ℓ, π to obstain
regression coefficients Γ̂n

ℓ,βββ, Γ̂n
ℓ,s,ℓ,r, Γ̂n

π,s, Γ̂n
π,βββ.

▷Kernel density estimate pn
βββ,s,b(r).

Γ̂t
n︸︷︷︸

dLeq
dβββ

= Γ̂n
ℓ,βββ︸︷︷︸
∂L
∂βββ

+ Γ̂n
ℓ,s,ℓ,r︸ ︷︷ ︸

∂L
∂s +∂L

∂r

·
( 1

pn
βββ,ŝt

n,bn
(ŝt

n) − Γ̂n
π,s

· Γ̂n
π,βββ︸ ︷︷ ︸

∂s
∂βββ

)
.

Consistency Theorem

Let {tn} be an increasing sequence tn → ∞.
There exists a sequence {bn} such that bn → 0
so that

Γ̂tn
n (βββ) p−→ dLeq

dβββ
(βββ).

Simulation

We consider a population of agents including
Naturals - high ηηη, low γγγ.
Gamers - low ηηη, high γγγ1.

The decision maker earns a loss of −ηηη1 on agents
they accept. The naive policy βββ = [1, 0] accepts
many gamers and earns suboptimal policy loss.
Our estimator enables learning the optimal policy!
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