Policy Learning with Competing Agents

Roshni Sahoo* Stefan Wager[†]

* Department of Computer Science, Stanford University Graduate School of Business, Stanford University

Introduction

Decision makers often aim to learn a treatment assignment policy under a **capacity constraint** on the number of agents that they can treat. When agents can respond **strategically** to such policies, **competition** arises, complicating the estimation of the effect of the policy. Examples: college admissions, job hiring.

Equilibrium Policy Loss

Learning Policies

At an **equilibrium** induced by a fixed β , the level of competition is **fixed over time**. Let $s(\beta)$ be the equilibrium threshold induced by $\boldsymbol{\beta}$. If $s^t = s(\boldsymbol{\beta})$, then we have that $s^{t+1}, s^{t+2} \cdots = s(\boldsymbol{\beta}).$

The decision maker's **equilibrium policy loss** is given by $L_{eq}(\boldsymbol{\beta}) = L(\boldsymbol{\beta}, s(\boldsymbol{\beta}), s(\boldsymbol{\beta})).$

Following Wager & Xu (2020), we can estimate $\frac{dL_{eq}}{d\beta}$ in finite samples without disturbing the equilibrium via mean-zero perturbations.

Our Estimator

 \triangleright For each agent *i*, we perturb β , *s* as follows

Treatment Assignment Model

Let $q \in (0, 1)$. At each time step $t \in \{1, 2, 3...\}$, the decision maker assigns treatments to 1-q proportion of a target population based on observed covariates $\mathbf{x} \in \mathcal{X}$. At time t, the decision maker's policy is

 $\pi(\mathbf{x}, \epsilon; \boldsymbol{\beta}, s^t) = \mathbb{I}(\boldsymbol{\beta}^T \mathbf{x} + \epsilon > s^t),$

where $\boldsymbol{\beta}, s^t$ are policy parameters at time-step t, and ϵ noise sampled from a mean-zero distribution G. At time-step t + 1, an agent with type $\nu \sim$ F will report covariates $\mathbf{x}(\boldsymbol{\beta}, s^t, \nu)$ to the decision maker, reacting strategically to the policy deployed in time step t. At time-step t + 1, the decision maker's policy is

 $\pi(\mathbf{x}, \epsilon; \boldsymbol{\beta}, s^{t+1}) = \mathbb{I}(\boldsymbol{\beta}^T \mathbf{x} + \epsilon > s^{t+1}),$ where s^{t+1} is determined by the q-th quantile of marginal distribution of $\boldsymbol{\beta}^T \mathbf{x}_i(\boldsymbol{\beta}, s^t, \nu) + \epsilon$.

Mean-Field Regime

We consider **mean-field regime** where there is an infinite number of agents. Let $P_{\beta,s}$ be the distribution over scores when agents best respond to β , s, and let $q(P_{\beta,s})$ be its q-th quantile. The level of competition evolves via **de**terministic fixed-point iteration.

 $s^{t+1} = q(P_{\beta,s^t}) \quad t = 1, 2, \dots$

The mean-field equilibrium threshold $s(\boldsymbol{\beta})$ under a fixed $\boldsymbol{\beta}$ satisfies $s = q(P_{\beta,s})$.

Mean-Field Equilibrium Theorem

When the variance of the noise distribution G is sufficiently high, the mean-field equilibrium threshold **exists** and is **unique** and **varies smoothly** w.r.t. β .

Implication: $L_{eq}(\boldsymbol{\beta})$ is differentiable! This enables learning optimal policies via gradient descent. $\partial L = \partial L_{\lambda}$ ∂L $\cdot \frac{1}{\partial \boldsymbol{\beta}}$. $\partial \boldsymbol{\beta}$ $d\beta$ $\overline{\partial s}$ $\overline{\partial r}$ model effect policy effect equilibrium effect

 $\boldsymbol{\beta}_i = \boldsymbol{\beta} + b_n \boldsymbol{\zeta}_i \quad \boldsymbol{\zeta} \in \{-1, 1\}^d$ $s_i = s + b_n \zeta_i \quad \zeta \in \{-1, 1\}^d.$

 \triangleright Observe $\ell, \pi \in \mathbb{R}^n$ - losses, treatment assignments.

 \triangleright Run OLS from perturbations to ℓ, π to obstain regression coefficients $\hat{\Gamma}^n_{\ell,\beta}$, $\hat{\Gamma}^n_{\ell,s,\ell,r}$, $\hat{\Gamma}^n_{\pi,s}$, $\hat{\Gamma}^n_{\pi,\beta}$. \triangleright Kernel density estimate $p_{\beta,s,b}^n(r)$.

Consistency Theorem

Let $\{t_n\}$ be an increasing sequence $t_n \to \infty$. There exists a sequence $\{b_n\}$ such that $b_n \to 0$ so that

Policy Loss

The decision maker observes a loss $\ell(\pi, \nu)$ if they assign a treatment $\pi \in \{0,1\}$ to an agent with type ν . The population policy loss at timestep t + 1 is $L(\boldsymbol{\beta}, s^t, s^{t+1})$, where

 $L(\boldsymbol{\beta}, s, r) = \mathbb{E}_{\nu \sim F.\epsilon \sim G} \left[\ell(\pi(\mathbf{x}(\boldsymbol{\beta}, s, \nu), \epsilon; \boldsymbol{\beta}, r), \nu) \right].$

Agent Behavior Model

Following Frankel & Kartik (2019), we assume each agent has a **private** type $\nu = (\eta, \gamma) \sim F$.

 $\eta \in \mathcal{X}$ - raw covariates.

 $\gamma \in \mathcal{G}$ - ability to modify their covariates.

Agents **myopically** aim to maximize their utility with respect to a previous policy.

$$u(\mathbf{x};\boldsymbol{\beta},s,\nu) = - \underbrace{c_{\nu}(\mathbf{x}-\boldsymbol{\eta};\boldsymbol{\gamma})}_{\boldsymbol{\lambda}} + \underbrace{\pi(\mathbf{x},\epsilon;\boldsymbol{\beta},s)}_{\boldsymbol{\lambda}}.$$

Finite-Sample Approximation

We consider the regime with a **finite** number of agents. Let $P_{\beta,s}^n$, $q(P_{\beta,s}^n)$ be the *empirical* distribution over scores when agents best respond to β , s and its q-th quantile. The level of competition oscillates via **stochastic fixed-point** iteration.

$$\hat{s}_{n}^{t+1} = q(P_{\beta,\hat{s}_{n}^{t}}^{n}) \quad t = 1, 2...$$

As n, t grow large, we expect iterates to approximate the mean-field equilibrium threshold.

$\hat{\Gamma}_n^{t_n}(\boldsymbol{\beta}) \xrightarrow{p} \frac{dL_{\text{eq}}}{d\boldsymbol{\beta}}(\boldsymbol{\beta}).$

Simulation

We consider a population of agents including

Naturals - high η , low γ .

Gamers - low η , high γ_1 .

The decision maker earns a loss of $-\eta_1$ on agents they accept. The naive policy $\beta = [1,0]$ accepts many gamers and earns suboptimal policy loss. Our estimator enables learning the optimal policy!

cost of deviating from η reward The agent **best response** is defined as $\mathbf{x}(\boldsymbol{\beta}, s, \nu) = \operatorname*{argmax}_{\mathbf{x} \in \mathcal{X}} \mathbb{E}_{\epsilon \sim G} \left[u(\mathbf{x}; \boldsymbol{\beta}, s, \nu) \right].$ The agent's score $\boldsymbol{\beta}^T \mathbf{x}(\boldsymbol{\beta}, s, \nu)$ is visualized.

Stochastic Equilibria Theorem

Let $\epsilon, \delta \in (0, 1)$. Let $q(P_{\beta,s})$ be a contraction in s with Lipschitz constant κ . Let $k = \lceil \frac{\log(\frac{\epsilon}{2S})}{\log \kappa} \rceil$. For t such that $t \geq k$ and n such that

$$n \geq \frac{2}{\epsilon^2 (1-\kappa)^2 D^2} \log(\frac{2k}{\delta}),$$

we have that

 $P(|\hat{s}_n^t - s(\boldsymbol{\beta})| \ge \epsilon) \le \delta.$